剪纸纹样识别算法研究
[Abstract]:The application of image recognition technology is very extensive, and it is one of the hotspots of current research. Many experts and scholars have done research in this field and have made some good achievements. Paper-cut is one of the traditional folk arts with a long history in China. With the development of animation industry, paper-cut is a good material for animation. It will be a very meaningful work to combine the paper-cut art with the image recognition to study the computer paper-cut.
Feature extraction is the key to determining similarity and recognizing an image.How to extract the essential and invariant effective features of an image is the core content of the research.In this paper,the research status of various feature extraction and recognition methods for image recognition at home and abroad is deeply studied,and some comparisons are put forward for deformed image recognition based on non-mathematical transformation. For the sake of effective method, it can extract the effective features without translation, rotation, scale change and small deformation, and is applied to the recognition of the artistic image of paper-cut pattern. The experiment proves that the method has a good effect.
The work of this paper is mainly from the following aspects:
(1) Studying the characteristics of the paper-cut image, summarizing and classifying the pattern of paper-cut. Using the general image pretreatment technology, the paper-cut image can be processed by background denoising, graying and binary processing, which can effectively remove the background noise of the paper-cut image, highlight the pattern and prepare for the follow-up pattern recognition.
(2) A new feature extraction algorithm based on R-transform and singular value decomposition is proposed in this paper. Based on radon transform, a simpler method is proposed to extract image features. The features extracted by this method are invariant in translation, rotation and scale, and have certain robustness. It represents the structural features of the image and can be better. Recognition of certain deformation paper cut patterns.
(3) To overcome the disadvantage that the features extracted by existing methods are not suitable for deformed images, a paper-cut pattern recognition method is proposed. Fourier-Mellin transform is used to obtain the eigenvalues of different subbands of the target by calculating the variance and mean of each layer of the feature without geometric transformation. Translation, rotation and scale invariance, and suitable for recognition of deformed patterns.
(4) Studying all kinds of image recognition methods, using the support vector machine with better classification performance and generalization ability as the classifier of pattern recognition can effectively recognize and classify the pattern.
The paper-cut images used in the experiment are all obtained by scanning paper-cut related books. The algorithm in the paper is theoretically analyzed and verified by experiments. The results show that:
(1) Based on R-transform and singular value decomposition, the method is simple in calculation, robust in feature extraction, invariant in translation, rotation and scale, and can distinguish most deformed images.
(2) Multi-resolution FM transform algorithm is not affected by geometric transformation, and can effectively recognize and classify paper-cut patterns with good robustness.
(3) Support Vector Machine (SVM) is used as classifier, which has good generalization ability and can effectively separate exaggerated and deformed patterns.
Starting from practical problems, this paper deeply studies the pretreatment, feature extraction and recognition methods of paper-cut pattern images, and puts forward some effective methods of feature extraction and recognition for non-strictly mathematically deformed images. It can recognize certain deformed images, which broadens the method of image recognition in theory. It provides a new method for the design and Realization of computer paper-cut art by combining the paper-cut art to study pattern recognition.
【学位授予单位】:广西师范大学
【学位级别】:硕士
【学位授予年份】:2008
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 毛顿;;高速公路ETC电子收费系统的技术研究[J];数字技术与应用;2011年06期
2 ;[J];;年期
3 ;[J];;年期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相关会议论文 前10条
1 热合木江;古丽·吐尔逊;马玉书;;训练前向神经网络的一种有效算法[A];西部开发与系统工程——中国系统工程学会第12届年会论文集[C];2002年
2 范自柱;;基于曲面插值的图像识别技术[A];通信理论与信号处理新进展——2005年通信理论与信号处理年会论文集[C];2005年
3 吕同玲;任洪娥;马岩;;长条薄片刨花视频检测方法的探讨[A];黑龙江省计算机学会2007年学术交流年会论文集[C];2007年
4 张琦;方应谦;;浅谈基于神经网络的图象识别[A];2001年中国智能自动化会议论文集(上册)[C];2001年
5 聂振钢;张晓林;李宏伟;陆国雷;;具有视觉导航和目标识别的小型多功能无人驾驶直升机[A];2005年中国智能自动化会议论文集[C];2005年
6 李宇成;王目树;阴亮;贾雁;;基于视频图像的车辆外形参数测量[A];中国计量协会冶金分会2008年会论文集[C];2008年
7 李宇成;王目树;阴亮;贾雁;;基于视频图像的车辆外形参数测量[A];2008全国第十三届自动化应用技术学术交流会论文集[C];2008年
8 苑玮琦;王建军;张宏勋;;一种新的预加水成球控制方法[A];1997中国控制与决策学术年会论文集[C];1997年
9 王新红;钱建生;刘富强;粟君;;用图象处理的方法监测原煤块率的研究[A];中国图象图形科学技术新进展——第九届全国图象图形科技大会论文集[C];1998年
10 裴海龙;罗沛;李志鹏;龙腾;;基于视觉导航的自主飞行机器人系统原理及实现[A];2005年中国智能自动化会议论文集[C];2005年
相关重要报纸文章 前4条
1 周薇;观众青睐太平洋克罗斯罗尔新设备[N];中国纺织报;2007年
2 本报记者 谷秀军;首都机场海关旅检处——一丝不苟的国门卫士[N];金融时报;2004年
3 记者 全鑫 高开升;创造性构思:自主创新的源泉[N];鞍山日报 ;2006年
4 ;脸是你的“金钥匙”[N];中国高新技术产业导报;2001年
相关博士学位论文 前7条
1 黄山;车牌识别技术的研究和实现[D];四川大学;2005年
2 李智慧;基于可视化的三维放射治疗计算机模拟系统的研究[D];四川大学;2002年
3 周日贵;量子神经网络模型研究[D];南京航空航天大学;2008年
4 李剑;局部放电灰度图象识别特征提取与分形压缩方法的研究[D];重庆大学;2001年
5 毕晓君;基于智能信息技术的纹理图象识别与生成研究[D];哈尔滨工程大学;2006年
6 陈才扣;基于核的非线性特征抽取与图象识别研究[D];南京理工大学;2004年
7 高建新;数字散斑相关方法及其在力学测量中的应用[D];清华大学;1989年
相关硕士学位论文 前10条
1 韦月琼;剪纸纹样识别算法研究[D];广西师范大学;2008年
2 胡志群;改善的EVAD技术与图象识别法提取平均散度[D];南京信息工程大学;2005年
3 张建波;射击运动自动报靶系统中的图象识别判靶算法研究[D];西安电子科技大学;2001年
4 李国祥;剪纸纹样的特征提取和识别算法研究[D];广西师范大学;2010年
5 曹爱飞;基于电力设备的热图像处理与分析[D];安徽大学;2007年
6 李余庆;基于语音识别的轮椅机器人无线监控系统的研究[D];南昌大学;2009年
7 曹昊;基于自适应支持向量机算法的应用研究[D];中国地质大学(北京);2008年
8 李源;联合变换相关器在图象识别上的研究[D];电子科技大学;2001年
9 吕强;基于边界矩的模糊神经网络图象识别[D];哈尔滨工程大学;2006年
10 苏振文;基于ARM的移动机器人导航决策系统研究[D];广东工业大学;2008年
,本文编号:2227620
本文链接:https://www.wllwen.com/wenyilunwen/dongmansheji/2227620.html