氯胺酮在家兔体内的死后弥散研究
本文关键词:氯胺酮在家兔体内的死后弥散研究 出处:《山西医科大学》2012年硕士论文 论文类型:学位论文
更多相关文章: 氯胺酮 死后弥散 死后再分布 气相色谱-质谱联用法 气相色谱法
【摘要】:目的 研究氯胺酮在家兔体内的死后弥散过程,探讨氯胺酮在动物体内的死后再分布机制,为滥用氯胺酮中毒和死亡案例检材的合理选取、检测结果的分析评价提供参考依据,同时为氯胺酮生前服毒与死后染毒的鉴别提供实验依据。 方法 1.氯胺酮分析检测方法:家兔体液、组织样品匀浆后加入内标物SKF525A,碱化,乙醚萃取,利用保留时间结合特征离子峰(GC/MS)定性分析,内标法和工作曲线法(GC-NPD)定量分析样品中氯胺酮含量。 2.氯胺酮在去胃家兔体内的死后再分布:实验组家兔以150mg·kg-1剂量氯胺酮灌胃,2h后缺氧处死,去胃,家兔尸体仰卧位置于室温(19℃-24℃)条件下,于死后不同时间(0h、3h、6h、12h、24h、48h、72h、96h)分别取心肌、肝脏、脾脏、肺脏、肾脏、脑、左上肢肌肉、左下肢肌肉、心血、外周血、尿液、胆汁和玻璃体液等13个样品,检测其中氯胺酮含量;对照组家兔以生理盐水灌胃,各对应样品为空白对照。 3.氯胺酮在家兔体内的死后弥散:实验组家兔缺氧处死后,以150mg·kg-1剂量灌胃氯胺酮,家兔尸体仰卧位置于室温(19℃-24℃)条件下,于给药后不同时间(3h、6h、12h、24h、48h、72h、96h)分别取心肌、肝脏、脾脏、肺脏、肾脏、脑、左上肢肌肉、左下肢肌肉、心血、外周血、尿液、胆汁和玻璃体液等13个样品,检测其中氯胺酮含量;对照组家兔以生理盐水灌胃,各对应样品为空白对照。 结果 1.家兔以150mg·kg-1剂量氯胺酮灌胃2h后,缺氧处死,急性中毒家兔体内氯胺酮的浓度大小依次是:尿液肾脏脑肝脏、肺脏心肌、脾脏左上/下肢肌肉胆汁心血、外周血玻璃体液(P0.05)。氯胺酮灌胃家兔处死去胃后尸体放置0h-96h内,氯胺酮在家兔心肌、肝脏、肺脏、左上/下肢肌肉、尿液、心血和胆汁中的含量变化与0h相比无显著性差异(P0.05)。 2.家兔缺氧处死后,以150mg·kg-1剂量氯胺酮灌胃,家兔尸体仰卧放置3h-96h内,其脑、玻璃体液、尿液、左上/下肢肌肉中均未检测到氯胺酮;家兔死后氯胺酮灌胃放置24h后,心肌、心血和外周血中检出氯胺酮,24h-96h内其含量变化无显著性差异(P0.05),且心血中氯胺酮含量均大于外周血(P0.05),心血与外周血中的氯胺酮含量比值(C/P)为1.73(1.48-2.03);48h时脾脏、肺脏和肝脏中均检出氯胺酮,48h-96h内脾脏、肺脏和肝脏中氯胺酮浓度随时间延长递增(P0.05)。从胃中弥散到肺脏和肝脏中氯胺酮浓度与其在解剖学上距离胃的远近有关,距离胃部越近,氯胺酮的弥散速率越快,氯胺酮浓度越高,反之,距离胃部越远,氯胺酮的弥散速率越慢,氯胺酮浓度越低。 结论 家兔以氯胺酮灌胃给药后立即去胃,排除胃对其相邻组织器官的影响,各组织脏器及体液中氯胺酮含量无显著性变化,基本趋于稳定。结果提示,排除家兔尸体存放过程中胃内高浓度氯胺酮对其相邻组织器官中氯胺酮浓度的影响后,家兔体内血液丰富的其他脏器(也可以作为毒物蓄积器官)如心肌、肝脏、肺脏、脾脏等对死后再分布的影响不明显。 胃内氯胺酮在家兔体内的死后弥散实验结果说明,胃作为毒物蓄积库,对于氯胺酮在动物体内的死后再分布过程起到了顺浓度梯度扩散作用,即氯胺酮在家兔体内存在死后弥散现象,且弥散量和各脏器与胃在解剖学上距离远近有关。死后氯胺酮灌胃组家兔放置96h内,脑、玻璃体液、尿液、左上/下肢肌肉等样品中均未检测到氯胺酮,不受死后弥散的影响,可作为生前服毒与死后染毒氯胺酮的鉴别依据。
[Abstract]:objective
Study on dispersion of ketamine in rabbits after the death of the animal to investigate the effect of ketamine on the postmortem distribution mechanism, reasonable selection of ketamine poisoning and death case materials, to provide reference for the analysis and evaluation of test results, at the same time as before and after the death of ketamine poison exposure to identify and provide experimental basis.
Method
1. ketamine analysis and detection method: rabbit body fluid, tissue samples were homogenized, added internal standard SKF525A, alkalization, ether extraction, retention time combined with characteristic ion peak (GC/MS) qualitative analysis, internal standard method and working curve method (GC-NPD), quantitative analysis of ketamine content in samples.
The 2. redistribution of ketamine in rabbits after death: the stomach of rabbits in the experimental group with 150mg kg-1 dose of ketamine administered, 2h after hypoxia were to stomach, rabbit corpses supine at room temperature (19 DEG -24 DEG) conditions in different time after death (0h, 3h, 6h, 12h, 24h. 48h, 72h, 96h) were collected from the myocardium, liver, spleen, lung, kidney, brain, left upper limb muscles, left lower limb muscle, blood, peripheral blood, urine, 13 samples of bile and vitreous fluid, to detect the concentration of ketamine; rabbits in control group were fed with saline, the corresponding samples for blank control.
3. ketamine in rabbits postmortem diffusion: the death of rabbits in the experimental group after hypoxia in 150mg kg-1 dose administered ketamine in rabbits body supine at room temperature (19 DEG -24 DEG) conditions in different time after administration (3H, 6h, 12h, 24h, 48h, 72h, 96h) respectively. Heart, liver, spleen, lung, kidney, brain, left upper limb muscles, left lower limb muscle, blood, peripheral blood, urine, 13 samples of bile and vitreous fluid, to detect the concentration of ketamine; rabbits in control group were fed with saline, the corresponding samples as control.
Result
1. rabbits with 150mg kg-1 dose ketamine intragastric administration of 2h after hypoxia were concentration of acute poisoned rabbits were: Ketamine urine kidney liver spleen lung brain, myocardium, left upper / lower limb muscles of bile blood, peripheral blood vitreous fluid (P0.05). Intragastric administration of ketamine to gastric body of rabbits after the placement of 0h-96h in ketamine in rabbit myocardium, liver, lung, left upper / lower limb muscles, urine, compared with no significant changes in the content of blood and bile and the difference of 0h (P0.05).
2. rabbits were sacrificed after hypoxia in 150mg kg-1 dose of ketamine administered, rabbit corpses placed supine 3h-96h within the brain, vitreous fluid, urine, left upper / lower limb muscles were not detected in ketamine; myocardium in rabbits after death after intragastric administration of ketamine placed 24h, ketamine, detection of blood and peripheral blood, 24h-96h the changes of the content of no significant difference (P0.05), and ketamine in blood were higher than the content of peripheral blood (P0.05), the ratio of ketamine concentration in blood and peripheral blood (C/P) 1.73 (1.48-2.03); 48h was detected in spleen, lung and liver of ketamine, 48h-96h in spleen, lung concentration of ketamine and in the liver with time increasing (P0.05). The concentration of ketamine diffusion to the lung and liver from the stomach and the anatomical distance is the distance of stomach, stomach closer, the faster the rate of diffusion of ketamine and ketamine concentration is high, on the other hand, the distance of the stomach In addition, the slower the diffusion rate of ketamine, the lower the concentration of ketamine.
conclusion
Go to the stomach immediately in rabbits after intragastric administration of ketamine, to eliminate the effect of the adjacent gastric tissues and organs, organs and body fluids ketamine content in different tissues had no significant changes, tends to be stable. The results showed that high concentration of ketamine in the stomach to exclude rabbit corpses during storage of ketamine concentration in tissues and organs after the adjacent and other organs in vivo blood rich (also can be used as a poison accumulation organ such as heart, liver), lung, spleen and other effects of redistribution after death is not obvious.
In the stomach of ketamine in rabbits after the death of diffusion. The experiment results show that the stomach poison accumulation as base for redistribution of ketamine in animal body after death process to concentration gradient diffusion, i.e. in the presence of ketamine in rabbits after the death of dispersion, and the dispersion and the viscera and stomach in the anatomical distance. After the death of ketamine gavage group rabbits placed 96h in brain, vitreous fluid, urine, left upper / lower limb muscles samples were not detected in ketamine, not affected by diffusion after death, can be used as a basis for the identification of ketamine exposure before and after the death of the poison.
【学位授予单位】:山西医科大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R363
【相似文献】
相关期刊论文 前10条
1 易旭夫,陈晓刚,谢英,林霞,郭少峰;玻璃体液检测用于糖尿病猝死死因判定1例[J];法医学杂志;2005年02期
2 汪岚;战玉祝;刘茜;刘良;;家兔死后玻璃体液离子浓度检测的微量重复取样法[J];中国法医学杂志;2006年03期
3 战玉祝;汪岚;刘良;;家兔玻璃体液微量取样与一次取样的比较[J];法律与医学杂志;2006年03期
4 陶涛;胥劲;罗通行;廖志钢;潘洪富;;人体死后不同时间玻璃体液化学成分的变化趋势[J];四川大学学报(医学版);2006年06期
5 汪岚;姜思祖;刘良;;家兔玻璃体液间隔多次微量取样方法研究[J];中国法医学杂志;2006年06期
6 史文军;邓世雄;赵新才;汪平;;家兔急性酸中毒死后玻璃体液化学成分的变化趋势[J];重庆医科大学学报;2009年07期
7 史文军;邓世雄;赵新才;;家兔急性有机磷中毒死后玻璃体液化学成分的变化趋势[J];中国法医学杂志;2009年04期
8 王建中;;在晚期的吸收和排除阶段中关于血和玻璃体液中乙醇水平联系的研究[J];法医学杂志;1991年01期
9 闫新云,安虎雁,,安俊杰;眼球玻璃体液流变性初探[J];新疆大学学报(自然科学版);1996年02期
10 李剑波,刘云志,张佐才,李永国,孙云林,丁世家,张继锋,王时华,张敬军;玻璃体液化学成分的检测及其意义[J];中国法医学杂志;1997年04期
相关会议论文 前1条
1 荆洋;高永峰;;增殖型糖尿病视网膜病变患者玻璃体液中促红细胞生成素浓度的测定[A];中华医学会第十二届全国眼科学术大会论文汇编[C];2007年
相关重要报纸文章 前1条
1 英 译;单纯疱疹病毒是一病因[N];医药经济报;2001年
相关博士学位论文 前2条
1 潘洪富;人死后玻璃体液化学成分含量改变与死亡时间关系的研究[D];四川大学;2005年
2 汪岚;玻璃体液取样方法及死亡时间推断的研究[D];华中科技大学;2006年
相关硕士学位论文 前10条
1 吴海荣;大鼠血液、玻璃体液、肌肉乙醇浓度关系的研究[D];中国医科大学;2009年
2 史文军;家兔急性有机磷中毒死后及酸中毒死后玻璃体液化学成分的变化趋势[D];重庆医科大学;2009年
3 徐升桥;用于推断死亡时间的便携式玻璃体液钾钠离子浓度检测系统设计[D];中南大学;2011年
4 蔡晶晶;血红素加氧酶-1在糖尿病视网膜病变患者外周血及玻璃体液中表达及意义[D];南方医科大学;2014年
5 李海;家兔眼玻璃体液AKP、γ-GT、Fe及P含量变化与PMI的相关性研究[D];山西医科大学;2010年
6 刘晓霞;乙醇在犬体内的死后再分布及保存人血液中稳定性的研究[D];山西医科大学;2007年
7 霍菁菁;不同温度下死亡家兔玻璃体液钾离子浓度与PMI关系的研究[D];甘肃政法学院;2014年
8 曾君;IL-33/sST2在PDR及PVR患者玻璃体液及血清中的表达[D];中南大学;2013年
9 谭晓辉;氯氮平及其代谢物的死后分布及死后弥散研究[D];山西医科大学;2013年
10 高渊;氯胺酮在家兔体内的死后弥散研究[D];山西医科大学;2012年
本文编号:1361561
本文链接:https://www.wllwen.com/xiyixuelunwen/1361561.html