大鼠少突胶质细胞的分离培养与定向诱导分化
发布时间:2018-01-17 03:28
本文关键词:大鼠少突胶质细胞的分离培养与定向诱导分化 出处:《河北医科大学》2012年硕士论文 论文类型:学位论文
更多相关文章: 少突胶质细胞前体细胞 细胞培养 细胞分化 大鼠 纯化 细胞增值
【摘要】:目的:少突胶质细胞(Oligodendrocyte, OL)是中枢神经系统的髓鞘形成细胞,在神经元信息的快速传导以及轴突的功能维持方面起着关键的作用。少突胶质细胞起源于胚胎神经管的神经上皮细胞,前脑的少突胶质细胞由内侧脑室周围脑室下区的祖细胞分化而来,是一种终末细胞不具有分裂能力,其来源于少突胶质细胞/Ⅱ型星形胶质细胞(oligodendrocyte/type2astrocyte, O2A)。在胚胎形成的晚期阶段这些O2A/OPCs在中枢神经系统内增值并移行,最终分化成为生成髓鞘的少突胶质细胞。目前认为在体外培养的少突胶质细胞经历了几个不同的阶段,包括增值期的OPCs,其特征为前体细胞标记物如血小板来源生长因子(PDGFaR)的表达,形态上表现为两级或三级的细胞;未成熟少突胶质细胞,表达能被04抗体特异识别的多级形态的细胞;以及成熟的髓鞘生成少突胶质细胞,其特征为表达髓鞘特异蛋白如髓鞘脂碱蛋。用更为简单适用的方法分离和纯化大量有生物活性的OPCs不仅有助于更好的了解少突胶质细胞的功能、行为及轴突-神经元的相互作用,更为髓鞘的修复研究提供了必不可少的工具。更为重要的是,可将体外培养增值的少突胶质系细胞移植入脱髓鞘的中枢神经系统,少突胶质细胞前体通过移行进而产生大量成熟的少突胶质细胞,因此O2A/OPCs移值治疗脱髓鞘病已在尝试中,这些实验均需要大量不同阶段的少突胶质细胞。同时,少突胶质系细胞的分离和培养会促进少突胶质系细胞在体外的使用,如应用于脱髓鞘病变的药物研究等。 本实验旨在研究少突胶质细胞祖细胞(oligodendrocyte precursor cells,OPCs)培养及纯化方法,并研究不同诱导条件对大鼠O2A/OPCs分化的影响。 方法: 1.混合胶质细胞原代培养:取新生48h以内的SD大鼠,冰埋麻醉,取出大脑并沿中线切开,去除嗅球、基底核、海马、脑膜和血管组织,将皮层剪成1mm3的小组织块,筛网过滤,移入离心管内,加入含有DNase I储备液(0.2mg/ml)和trypsin储备液(0.25%)的HBSS中进行消化(组织培养箱37℃),约15min后用DMEM20S停止胰酶消化,离心,种植于75mm玻璃培养瓶内,每2-3天换液,培养8-9天 2. OPCs分离、纯化和增值:以振荡分离法和差速贴壁法分离纯化OPCs;加入促进增殖的细胞因子PDGFα和bFGF,获得数量较多的OPCs,采用MTT法检测OPCs的活力,通过A2B5鉴定,培养细胞纯度在95%以上 3.定向诱导分化:更换含血清的培养基和不含血清的化学条件培养基,倒置相差显微镜观察记录每天细胞的形态变化,分化成熟的少突胶质细胞和星形胶质细胞进行免疫细胞化学测定 结果: 1.在接种后第7-8天,混合胶质细胞铺满瓶底,少突胶质细胞前体细胞位于星形胶质细胞层之上; 2.少突胶质细胞祖细胞胞体呈圆形,常有单极或双极突起,形成克隆球,,A2B5标记阳性,免疫荧光鉴定细胞纯度可达95%以上;3.生长因子PDGF和bFGF对少突胶质细胞前体细胞的存活和增殖及其重要。OPCs具有双向分化的能力,在不同诱导条件下可分化为星型胶质细胞或少突胶质细胞;结论:本实验证实了培养新生大鼠皮层中的少突胶质细胞前体细胞的方法简单可靠。通过振荡分离纯化法及结合少突胶质细胞定向培养基可以培养出高纯度的少突胶质细胞前体细胞。添加PDGF、bFGF可显著提高细胞产量,并使细胞保持在未成熟阶段。OPCs具有双向分化的潜能,在不同化学成分的培养基中可定向诱导出高纯度的少突胶质细胞和星形胶质细胞,这些细胞可用于药物对于神经胶质细胞的影响等实验研究中
[Abstract]:Objective: to oligodendrocytes (Oligodendrocyte, OL) is the myelin forming cells of the CNS, maintenance plays a key role in the rapid transmission of information and the function of neuronal axons. Neural epithelial cells of the oligodendrocyte originated from the embryonic neural tube, forebrain oligodendrocytes by medial periventricular brain the progenitor cells, is a kind of terminal cell does not have the ability to divide its source in oligodendrocytes / type II astrocytes (oligodendrocyte/type2astrocyte, O2A). In the late stage of embryonic development of these O2A/OPCs in the central nervous system and value migration, eventually become generation of myelin oligodendrocyte differentiation glial cells in vitro. The oligodendrocytes through several different stages, including proliferating OPCs, characterized by precursor cell markers such as platelet The source of growth factor (PDGFaR) expression, form two or three cells; immature oligodendrocytes, the expression can be multi form 04 antibodies to identify the cell; and mature myelinating oligodendrocytes, characterized by expression of myelin specific proteins such as myelin alkaline egg. A separation and purification method is simple and applicable to large biological activity of OPCs not only helps to better understand oligodendrocyte function, interaction behavior and neuron axon, more myelin repair research provides an essential tool. More importantly, the oligodendrocyte lineage cells after transplantation into the central nervous system demyelinating value-added of in vitro cultured oligodendrocyte precursor cells through the shift travel arising from a large number of mature oligodendrocytes, so O2A/OPCs transplant demyelinating disease treatment has been in the attempt, these A large number of oligodendrocytes in different stages are needed in the experiment. Meanwhile, the isolation and culture of oligodendroglial cells will promote the use of oligodendrocyte in vitro, such as drug research for demyelinating lesions.
The aim of this study is to investigate the culture and purification methods of oligodendrocyte precursor cells (OPCs), and to study the effect of different induction conditions on O2A/OPCs differentiation in rats.
Method锛
本文编号:1436127
本文链接:https://www.wllwen.com/xiyixuelunwen/1436127.html
最近更新
教材专著