当前位置:主页 > 医学论文 > 西医药论文 >

大脑颞上沟计算断层影像解剖学及三维可视化研究

发布时间:2018-06-01 07:43

  本文选题:端脑 + 颞上沟 ; 参考:《蚌埠医学院》2011年硕士论文


【摘要】:研究背景:随着显微神经外科技术的提高和神经影像技术的发展,当代神经外科已经改变了经典神经外科的传统开颅方式,向以病灶为中心的个体化、微创性手术入路发展,而微创手术的基础是术前对病变的精确定位。自20世纪80年代以来,磁共振成像技术的发展使得无创的活体脑结构研究成为可能。为适应基于立体定向技术的功能神经外科、微创神经外科以及神经放射外科等的快速发展,计算机辅助的影像引导下立体定向和介入放射技术为大脑皮层病变的微侵袭治疗提供了现实途径。对大脑重要脑沟进行三维定位及可视化研究,将为脑内微小病灶的精确定位、手术方案的拟定、微创技术的实施提供形态学依据。 颞上沟(Superior temporal sulcus,STS)是大脑外侧面相当恒定的脑沟之一,位于大脑外侧面,为颞上回与颞下回的界限,前起颞极,后至角回,由前下向后上走行,与外侧沟水平部几乎平行。颞上沟周围存在重要的皮质功能区,颞上沟在外侧面有大脑中动脉的重要分支围绕。颞上沟内侧有很多重要结构,例如侧脑室颞角、海马结构等等。上述区域是脑感染、肿瘤、血管性病变的好发部位。因此,颞上沟在断面上的准确识别及其在三度空间中的精确定位是颞上沟周围区域病变的影像定位诊断、立体定向及微创神经外科手术等的解剖学基础。 脑沟是脑分区的天然标志,通过识别脑沟定位不同的功能区或脑回,可以达到精确定位的目的,满足脑功能分区研究和脑外科发展的需求。然而关于颞上沟精确的三维空间定位、颞上沟的非对称性、颞上沟在大脑中的三维可视化模型构建的研究尚未见报道。鉴于此,本研究选取29例无神经、精神病史国人的MRI图像,对其颞上沟的形态位置及侧别差异进行统计分析;在基于连合间径的笛卡尔三维坐标系中测量颞上沟的立体定位数据集,求得其在此坐标系中的平面回归方程;构建基于断层影像的颞上沟在整脑中的三维可视化模型,为研究颞上沟区域的的临床影像学、立体定向外科、介入放射及微创外科等提供量化解剖学资料。 第一部分:基于连合间径定位体系的大脑颞上沟断层影像解剖学 目的:通过研究以AC-PC线为扫描基线的活体MR图像,探讨大脑颞上沟在横断面及矢状面上的形态特征 方法:29例健康常人志愿者颅脑,以大脑连合间径为扫描基线(AC-PC线),行横断层3mm薄层及矢状面7mmMR扫描。在微型计算机上将扫描数据以Dicom3.0格式导入eFilm2.1工作站,利用“3D-Cursor”技术以易识别的矢状面为对照,观察颞上沟在连续横断层面上的形态及位置;对颞上沟在断面上进行分段;对颞上沟在横断面上表现为多沟的层面进行统计分析。 结果:能够在薄层MR图像连续层面上准确识别颞上沟,并得出颞上沟的形态及位置规律: 1.颞上沟在断面上的分段在矢状面上可以分为水平段及升段,二者之间出现明显的拐点,在横断面上的颞上沟各段位置为(1)水平段范围均值:左侧Z=-27.10~2.28mm右侧Z=-26.48~2.07mm;(2)升段范围均值:左侧Z=2.28~36.41mm右侧Z=2.07~36.41mm 2.颞上沟拐点及多沟表现的统计 (1)颞上沟拐点三维坐标值:左侧:X±S=51.78±6.6221mm,Y±S=-34.90±8.1627mm,Z±S=2.06±3.1309mm右侧:X±S=-53.20±7.3935mm,Y±S=-28.34±8.8218mm,Z±S=2.24±3.1346mm (2)颞上沟在横断面上多沟表现两侧无明显差异性 3.笛卡尔坐标系中颞上沟水平段在Y轴上的最前与最后点的位置范围及前后跨度左侧:最前点Y的平均坐标值为32.2310±3.5072mm,最后点Y的平均坐标值为-38.3207±9.2233mm,在Y轴前后跨度的平均值为70.5517±10.2311mm.右侧:最前点Y的平均坐标值为34.0448±3.6126mm,最后点Y的平均坐标值为-32.1345±9.1437mm,在Y轴前后跨度的平均值为66.1793±10.0585mm.三组数据经两样本t检验P值均大于0.01 结论:利用“3D-Cursor”技术以易识别的矢状面为对照,可以在横断面薄层MR图像连续层面上准确识别颞上沟,为颞上沟区域病灶的定位和外科手术入路方案的制定提供了解剖学依据。颞上沟的分段及多沟层面的分析为经颞上沟手术入路和脑的发生发育学提供参考。 第二部分:大脑颞上沟升段以及颞上沟外侧缘立体定位数据集的构建及回归分析 1.颞上沟升段立体定位数据集的构建 目的:求得颞上沟升段在笛卡尔三维坐标系中的立体定位数据集。 方法:上述29例健康成人颅脑横断层MRI数据经格式转化导入Photoshop软件,经图象旋转、坐标原点平移,使得设定的大脑空间坐标系X、Y轴在该层面上的投影线分别与软件操作界面的坐标轴x、y完全重合;以颞上沟升段在外表面的点为起始点,沿颞上沟向内x值每隔3mm取点,读取、记录各取样点的x、y坐标值,z值为所在层面距离零层面的数目与层距的乘积。所有取样点坐标组成颞上沟升段在三维坐标系中的立体定位数据集。 结果:构建颞上沟升段在三维坐标系中的立体定位数据集 结论:颞上沟升段与笛卡尔三维坐标系有相对稳定的位置相关性。本研究构建的“颞上沟升段立体定位数据集”预期对于立体定向神经外科、介入放射治疗及微创神经外科等有较大的临床应用价值;同时,可以为神经生理功能、人类学等方面的研究提供形态学基础。 2.颞上沟外表面的投影图及拟合曲线方程分析 目的:计算颞上沟的外表面在冠状面和矢状面上投影图及其拟合曲线方程。 方法:以大脑联合间径中点为原点,前后联合间径与Y轴重叠建立笛卡儿三维坐标系;29例健康成人(无神经系统疾病、精神病史及其家族史),以AC-PC为扫描基线,扫描层厚2.5mm,层距0.5mm,采集颅脑横断层MRI的T1W的Dicom3.0格式数据。数据经格式转化导入Photoshop软件,读取、记录每一层面上颞上沟最外侧点的三维坐标值,z值的求得同前;利用spss16.0统计软件求解其在各投影方向上的拟合曲线方程。 结果:颞上沟外侧缘在冠状面及矢状面上的投影图能够反映颞上沟的特征,求出了颞上沟外侧缘在各投影平面上的直线和曲线回归方程: (1)在横断面上的拟合曲线方程左侧:X=-0.0006Y3-0.011Y2~-0.162~Y+64.812(R=0.821,R~2=0.673,S=4.253,P0.01)右侧:X=0.0004Y~3+0.010Y~2+0.195Y-64.004(R=0.846,R~2=0.715,S=3.799,P0.01) (2)在冠状面上的拟合曲线方程左侧:X=0.0004Z~3-0.017Z2-0.010Z+61.158(R=0.709,R~2=0.503,S=5.249,P0.01)右侧:X=0.0003Z~3+0.016Z~2-0.138Z-61.966(R=0.714,R~2=0.510,S=4.980,P0.01) (3)在矢状面上的拟合曲线方程左侧:Y=0.001Z~3+0.002Z~2-2.310Z-12.430(R=0.907,R~2=0.823,S=13.463,P0.01)右侧:Y=0.001Z~3+0.008Z~2-1.959Z-11.502(R=0.894,R~2=0.799,S=13.108,P0.01) 结论:颞上沟外侧缘回归方程的相关系数均较高,反映了其较高的拟合度,表明颞上沟的走行具有较大的稳定性。这在脑的发育学、人类学、体质测量学等方面具有一定的科学价值 第三部分:大脑颞上沟的三维重建及可视化 目的:重建颞上沟的三维可视化模型,,为微创手术、介入放射、精神外科及解剖学教学提供可视化模型。 方法:在微型计算机上,1例正常成人(无神经系统疾病、精神病史及其家族史)颅脑冠状位2mm薄层MRI扫描数据以Dicom3.0格式直接导入3D-doctor软件,人工分割侧脑室、颞上沟、大脑纵裂及大脑表面,分别以不同颜色标识,以复杂面重建方法对上述四者同时进行三维重建。 结果:成功重建了颞上沟在整脑中的三维可视化模型,展现了颞上沟在活体脑中的形态、位置及毗邻关系。模型可任意方位旋转,便于从各个方向观察。 结论:应用MRI数据建立颞上沟的三维模型,可以从不同角度观察颞上沟三维形态、空间位置及其与周围重要结构的毗邻关系,并可以在模型上进行三维解剖学的侧量,这在解剖学教学、立体定向精神外科、介入放射等方面有应用价值。
[Abstract]:Background: with the improvement of microsurgery in the microdepartment of neurosurgery and the development of neuroimaging techniques, the contemporary Department of neurosurgery has changed the classical craniotomy, the individualization of the focus and the development of minimally invasive surgery, and the basis of the minimally invasive surgery is the precise location of the lesions before the operation. Since 1980s. Since the development of magnetic resonance imaging technology has made it possible to study the noninvasive living brain structure, to adapt to the rapid development of the functional department of Neurosurgery based on stereotactic technology, minimally invasive Department of neurosurgery and Neurosurgery, computer assisted stereotactic and interventional radiology for the microinvasion of cerebral cortex lesions The three dimensional localization and visualization of the important cerebral sulcus of the brain will provide the precise location of the small brain lesions, the formulation of the operation scheme, and the morphological basis for the implementation of the minimally invasive technique.
The superior temporal sulcus (Superior temporal sulcus, STS) is one of the fairly constant cerebral sulcus, located outside the brain, the boundary of the superior temporal gyrus and the inferior temporal gyrus, the anterior temporal pole, the posterior to the angular gyrus, from the anterior to the back, almost parallel to the lateral sulcus level. There are important cortical functional areas around the superior temporal sulcus and the superior temporal sulcus is large on the outer side. There are many important branches of the middle cerebral artery. There are many important structures in the medial temporal trench, such as the temporal horn of the lateral ventricle, the structure of the hippocampus, and so on. The above area is a good location for the brain infection, tumor, and vascular disease. Therefore, the accurate identification of the superior temporal sulcus and its precise location in the three degree space are the images of the lesions around the superior temporal sulcus. The anatomical basis of position diagnosis, stereotactic surgery and minimally invasive Department of neurosurgery operation.
The brain gully is a natural sign of the brain region. By identifying different functional areas or gyrus, the brain can be located in the brain in order to achieve the goal of precise localization and to meet the needs of the study of brain function zoning and the development of the Department of cerebral surgery. However, the accurate three-dimensional spatial location of the superior temporal groove, the asymmetry of the superior temporal sulcus, the three-dimensional visualization model of the superior temporal sulcus in the brain The study has not been reported. In view of this, the MRI images of 29 people with a history of neurologic and psychotic history were selected to analyze the morphological position and side difference of the superior temporal sulcus. The plane regression of the upper temporal trench was measured in the Descartes three-dimensional coordinate system based on the junction diameter, and the plane regression in the coordinate system was obtained. The three-dimensional visualization model of the superior temporal sulcus in the whole brain was constructed based on the tomography of the temporal trench, which provided quantitative anatomical data for the clinical imaging, stereotactic surgery, interventional radiology and minimally invasive surgery for the study of the superior temporal trenches.
Part I: sectional anatomy of the superior temporal sulcus based on the commissural diameter positioning system.
Objective: To study the morphological characteristics of the superior temporal sulcus on the transverse and sagittal planes by studying the living MR images with AC-PC line as the scanning baseline.
Methods: the brain of 29 healthy and normal volunteers was scanned with 3mm thin layer and sagittal plane of transverse fault as the scan baseline (AC-PC line). The scanned data were introduced into the eFilm2.1 workstation with Dicom3.0 format on the microcomputer. Using the "3D-Cursor" technique, the easily recognizable sagittal plane was used as the control, and the superior temporal sulcus was observed continuously in the transverse direction. The morphology and location of the fault surface; segmental temporal sulcus was segmented; and the multiple sulcus of the superior temporal sulcus on the cross section was statistically analyzed.
Results: the superior temporal sulcus could be identified accurately on the thin layer of MR images and the morphology and location of the superior temporal sulcus were obtained.
1. the segment of the superior temporal trenches can be divided into horizontal and ascending segments on the sagittal plane, and there is an obvious turning point between the two. The average level of each segment of the superior temporal sulcus on the cross section is (1) of the horizontal segment range: the left Z=-27.10~2.28mm right Z=-26.48~2.07mm; (2) the mean of the left Z=2.28~36.41mm right Z=2.07~36.41mm
2. statistics of the inflection point of the superior temporal sulcus and the expression of multiple trenches
(1) the three-dimensional coordinate value of the inflection point of the superior temporal sulcus: X + S=51.78 + 6.6221mm, Y + S=-34.90 + 8.1627mm, Z + S=2.06 + 3.1309mm right: X +. S=-53.20 + 7.3935mm.
(2) there were no significant differences between the two sides of the superior temporal sulcus on the cross section.
3. the position range of the top and final points on the Y axis in the Cartesian coordinate system and the left and back points on the left side: the average coordinate value of the most forward point Y is 32.2310 + 3.5072mm, the average coordinate value of the final point Y is -38.3207 + 9.2233mm, the average value of the span in the Y axis is 70.5517 + 10.2311mm. right: the average coordinates of the maximum point Y. The value of the value is 34.0448 + 3.6126mm, the average coordinate value of the final point Y is -32.1345 + 9.1437mm, the average value of the span of the Y axis is 66.1793 + 10.0585mm. three groups, and the P value is greater than 0.01 through the two sample t test.
Conclusion: using the "3D-Cursor" technique with the easily recognizable sagittal plane as the control, the superior temporal groove can be accurately identified on the horizontal slice of the transect thin layer MR image. It provides an anatomical basis for the localization of the lesions in the superior temporal sulcus and the formulation of the surgical approach. The development of the road and brain provides a reference.
The second part is the construction and regression analysis of the stereotactic data set on the ascending part of the superior temporal sulcus and the lateral border of the superior temporal sulcus.
The construction of 1. stereotactic data set of the ascending segment of the superior temporal sulcus
Objective: to obtain the stereotactic data set in ascending Cartesian ascending segment in Cartesian three-dimensional coordinate system.
Methods: the MRI data of the craniocerebral transverse faults in 29 healthy adults were transformed into Photoshop software by format conversion, and the images were rotated and the coordinates of the coordinates were moved to make the set of the spatial coordinate system of the brain X. The projection lines on the Y axis were in complete coincidence with the coordinate axis of the software operation interface, x, y, and the point in the outer surface of the upper temporal trench was the starting point. Point, the inward x value of the superior temporal trench is taken every 3mm, read and record the X, y coordinates of each sampling point, and the Z value is the product of the number of zero layers and the layer distance at the level of the location, and the coordinates of all the sampling points constitute the stereoscopic positioning data set in the three-dimensional coordinate system.
Results: the stereotactic data set of the ascending part of the superior temporal sulcus in the three-dimensional coordinate system was constructed.
Conclusion: the ascending segment of the temporal sulcus has a relatively stable position correlation with Descartes's three-dimensional coordinate system. The "stereotactic data set of the ascending segment of the temporal trenches" is expected to have a greater clinical value for stereotactic Department of Neurosurgery, interventional radiology and minimally invasive Department of Neurosurgery, and can be used for neurophysiological functions, human beings. Studies, such as studies, provide a morphological basis.
2. the projection and fitting curve equation of the external surface of the superior temporal sulcus
Objective: to calculate the projection of the external surface of the superior temporal sulcus on the coronal and sagittal planes and the fitting curve equation.
Methods: the Cartesian three-dimensional coordinate system was set up with the middle point of the joint diameter of the brain and the joint diameter and the Y axis. 29 healthy adults (no nervous system disease, the history of mental illness and family history) were scanned with AC-PC as the scanning baseline, the thickness of the scanning layer was 2.5mm, the layer distance 0.5mm, and the Dicom3.0 format data of the T1W of the craniocerebral transverse fault MRI. Photoshop software is introduced to read and record the three-dimensional coordinates of the most lateral point of the superior temporal trench at each level, and the Z values are obtained in the same front, and the fitting curve equation in each projection direction is solved by using the SPSS16.0 statistical software.
Results: the projection of the lateral temporal margin of the trench on the coronal and sagittal plane can reflect the characteristics of the superior temporal trench, and the regression equation of the straight line and curve on the projection planes of the superior temporal sulcus of the temporal trench is obtained.
(1) on the left side of the fitting curve equation on the cross section: x = - 0. 0. 0, 3 - 0. - 0. - 0. 16 2 - y + 6. 8 12 (R=0.821, R~2=0.673, S=4.253, P0.01) on the right side: x = 0. 000 4 y ~ 3 + 0. 0 - 2 + 0. 5 - 60 - 6. 000 4 (R=0.846, R~2=0.715, S=3.799, P0.01)
(2) on the left side of the fitted curvilinear equation on the coronal plane: x = 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 + 6. 15. (R=0.709, R~2=0.503, S=5.249, P0.01) on the right side: x = 0. 0. 0. 3 + 3 + 0. 16 - 2 - 0. 13 - 0. 13 - 6. 6. 90 (P0.01).
(3) on the left side of the fitting curve equation on the sagittal plane: y = 0. 0. 0. 3 + 0 0. 0. 2 - 2 - 2. 2 - 2. 3 - 12. 40 (R=0.907, R~2=0.823, S=13.463, P0.01) on the right side: y = 0. 0. 0. 3 + 0. 0. 0. 0. 0. 2 - 1. 2 - 1. 5. 9 - 11 - 11. 50 (R=0.894, R~2=0.799, S=13.108, P0.01)
Conclusion: the correlation coefficient of the regression equation of the superior temporal sulcus is high, which reflects the higher fitting degree. It shows that the walking of the superior temporal sulcus has great stability. It has certain scientific value in the aspects of brain development, anthropology, physique and so on.
The third part: 3D reconstruction and visualization of the superior temporal sulcus of the brain.
Objective: to reconstruct the three-dimensional visualization model of the superior temporal sulcus, and to provide a visual model for minimally invasive surgery, interventional radiology, psycho surgery and anatomy teaching.
Methods: on the microcomputer, 1 normal adults (without nervous system disease, history of mental illness and family history) 2mm MRI scan data of the craniocerebral coronary position were directly introduced into the 3D-doctor software in Dicom3.0 format, and the lateral ventricle, the superior temporal groove, the cerebral longitudinal fissure and the brain surface were artificially divided, and the complex facial reconstruction method was used for the reconstruction of the complex surface. These four reconstructions are performed at the same time.
Results: the three-dimensional visualization model of the superior temporal sulcus in the whole brain was successfully reconstructed, which showed the shape, position and adjacent relationship of the superior temporal sulcus in the living brain. The model could rotate in any direction and was easy to observe in all directions.
Conclusion: using MRI data to establish a three-dimensional model of the superior temporal sulcus can be used to observe the three-dimensional morphology, spatial position and adjacent relationship with the important structures around the temporal sulcus from different angles, and can carry out the lateral volume of three-dimensional anatomy on the model, which is valuable in the teaching of anatomy, stereotactic neurosurgery, and interventional radiology.
【学位授予单位】:蚌埠医学院
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:R322.81

【参考文献】

相关期刊论文 前10条

1 沈龙山;王震寰;张磊;张顺花;张艳;张俊祥;刘志军;;计算机辅助连续结构追踪技术对大脑中央沟精确定位的方法学研究[J];蚌埠医学院学报;2008年06期

2 沈龙山;王震寰;张磊;张顺花;张艳;张俊祥;刘志军;;计算机辅助三维定标法在冠、矢状位MRI脑结构定位的研究[J];蚌埠医学院学报;2008年06期

3 张绍祥,刘正津,谭立文,邱明国,李七渝,李恺,崔高宇,郭燕丽,刘光久,单锦露,刘继军,张伟国,陈金华,王健,陈伟,陆明,游箭,庞学利,肖红,许忠信,王欲u&,邓俊辉,唐泽圣;首例中国女性数字化可视人体数据集完成[J];第三军医大学学报;2003年04期

4 蔡博文;周良学;游潮;陈海峰;;经颞上沟、顶间沟入路显微手术治疗侧脑室脑膜瘤[J];华西医学;2007年03期

5 孙阳;赵刚;许海洋;姜宏;;基底节区高血压性脑出血经颞上沟入路显微外科治疗体会[J];吉林医学;2006年09期

6 崔志潭;陈仲欣;黄璇英;;国人大脑半球脑沟的形态[J];解剖学报;1980年02期

7 耿道颖,沈天真,沈馨亚,沈宗文;正常脑标本解剖标志中断层解剖与MRI对照研究[J];中国临床神经科学;2000年01期

8 闫家阁,马永臻,李化连;胎脑颞叶脑沟发育规律的研究[J];临沂医专学报;1999年01期

9 周健,栾国明;颞叶癫痫的外科相关解剖[J];立体定向和功能性神经外科杂志;2001年01期

10 谭启富,孙克华,孙康健,潘云曦,华长春;颞叶的局部解剖与癫痫的手术治疗(颞叶切除术的一些改进)[J];立体定向和功能性神经外科杂志;1998年03期



本文编号:1963414

资料下载
论文发表

本文链接:https://www.wllwen.com/xiyixuelunwen/1963414.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户87d50***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com