基于毛细管电泳的量子点生物探针分离检测新技术研究
[Abstract]:With the development of life science, the complexity of the biological samples to be measured is becoming more and more complex, which puts forward higher requirements for the detection sensitivity, efficiency, speed, flux and cost of the analytical methods. As a new type of fluorescence probe, the quantum dots have the optical properties incomparable with the organic fluorescent dyes and the fluorescent egg white. In recent years, the quantum dots are based on the quantum dots. Fluorescence analysis has been widely used in the field of biological analysis. On the other hand, as a differential separation technology with high resolution, high sensitivity, high speed, high throughput and low sample consumption, capillary electrophoresis has a broad application prospect in the field of biological analysis. Based on this, the above two analytical methods are combined and established in this paper. A new analytical method based on quantum dot probe and capillary electrophoresis (using quantum dots as a fluorescent probe, capillary electrophoresis fluorescence detection as an analytical method), and its application in bioanalysis and detection is studied. The work completed in this paper is as follows:
(1) the capillary sieving electrophoresis was used to separate the water soluble CdSe/ZnS core shell quantum dots with different particle sizes, and the types and concentrations of the sieve medium, the concentration of the buffer solution and the pH, the effect of the separation voltage on the separation of the quantum dots were discussed. Under these conditions, the quantum dots of four different particle sizes were effectively separated and reproduced. The maximum relative standard deviation of the migration time is 1.01%, and there is a good correlation between the electrophoretic mobility and the particle size of the quantum dots (R2=0.997). The experiment proves that this method can be used to measure the particle size of the water soluble CdSe/ZnS nuclear point quantum dots. It provides an important reference for bioanalysis based on capillary electrophoresis and quantum dots fluorescent probes.
(2) the CdTe quantum dots with emission wavelength of 532 nm and the CdSe/ZnS quantum dots of 632 nm are used as donors and receptors of the fluorescence resonance energy transfer system. The above two quantum dots are labeled on the mice 1gG and the Sheep anti mouse 1gG respectively by covalent coupling method, and the immune affinity between the antigen and the antibody is close to two quantum dots. Distance, which leads to the occurrence of fluorescence resonance energy transfer between the donor and the receptor. We analyzed the above fluorescence resonance energy transfer by capillary electrophoresis. In order to detect the fluorescence intensity changes of the two quantum dots at the same time, we used two fixed detection wavelength channels to carry out the fluorescence intensity of the donor and the receptor respectively. At the same time, the fluorescence resonance energy transfer efficiency (38.56-69.58%) of the donor and the receptor was measured accurately, while the fluorescence resonance energy transfer system was successfully separated from other "excess" fluorescence by capillary electrophoresis. The fluorescence resonance energy transfer efficiency (12.77-52.37%) obtained by the fluorescence intensity measurement method is improved to a certain extent, and the observation of the fluorescence resonance energy transfer is more intuitive, the sensitivity is higher, and the sample consumption is less. This work provides a new analytical method for the study of fluorescence resonance energy transfer.
(3) using the avidin biotin system and the direct covalent coupling method, the CdTe quantum dots with the fluorescence emission wavelength of 585 and 650 nm were connected with the two molecular beacons with different base sequences, and two quantum dot molecular beacons were constructed and the capillaries of the quantum dot sub beacon probe hybridized with the different targets were obtained. The results of tube electrophoresis show that these two quantum dots - molecular beacon probes are only specific to the targets that are completely complementary to their ring part sequences, and all have the ability to recognize single base mutations. Using these two quantum dots - molecular beacon probes, we have accomplished two loci of specific nucleic acid sequences by capillary electrophoresis. The simultaneous detection of single base mutation has not only provided an important means for the detection of single nucleotide mutation in multiple sites in the future, but also has a wide application prospect in the field of high sensitivity detection and single nucleotide polymorphisms.
(4) the CdSe/ZnS quantum dots and gold nanoparticles were coupled with the complementary DNA single strand of different base lengths, and the quantum dots were connected to gold nanoparticles through the complementary hybridization of the DNA chain. A model was constructed to study the fluorescence of the metal enhanced quantum dots in the solution. Then the gold nanoparticles were investigated by capillary electrophoresis. The effect of the distance between the particles and the quantum dots on the fluorescence enhancement of the quantum dots. The experimental results show that the fluorescence of the gold nanoparticles in the solution has a strong distance dependence. Only when the gold nanoparticles and the quantum dots are apart from 6.8-18.7nm, the quantum dots appear to be enhanced by the fluorescence enhancement, and the 11.9 nm is a gold nanoparticle enhanced quantum dot fluorescein. At the best distance of the light, the fluorescence intensity of the quantum dots is enhanced to 2.3 times that of the original. Then, we add the same base sequence of the DNA chain to the quantum dots in the system of quantum dots and the nano gold particles 11.9 nm apart, and use the specific competition between the target DNA and the quantum dot -DNA to achieve the DNA of the 19.6 PG (15 nM). This work not only provides an important reference for the study of metal enhanced quantum dot fluorescence in the future, but also has a wide range of applications in the fields such as DNA hybridization analysis and high sensitivity DNA detection.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2011
【分类号】:R346
【相似文献】
相关期刊论文 前10条
1 ;[J];;年期
2 ;[J];;年期
3 ;[J];;年期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相关会议论文 前10条
1 赵文杰;赵晓寅;施国跃;周天舒;;毛细管电泳激光诱导荧光法对TBBPA暴露下大鼠体内甲状腺激素含量影响的研究[A];第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集[C];2011年
2 赵文杰;赵晓寅;施国跃;周天舒;;毛细管电泳激光诱导荧光法用于TBBPA暴露下的大鼠体内谷胱甘肽含量影响的研究[A];第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集[C];2011年
3 刘彦明;;毛细管电泳化学发光/电化学发光检测研究进展[A];中国化学会第十届全国发光分析学术研讨会论文集[C];2011年
4 李翠平;汪海林;;高灵敏的量子点介导的毛细管电泳DNA分离分析[A];中国化学会第28届学术年会第2分会场摘要集[C];2012年
5 张东明;付敏;马万云;陈瓞延;;用激光诱导荧光结合毛细管电泳测定单胺类神经递质[A];中国仪器仪表学会第三届青年学术会议论文集(上)[C];2001年
6 向彩云;孟祥英;梁汝萍;邱建丁;;毛细管电泳电化学发光在手性氨基酸分离中的应用[A];中国化学会第28届学术年会第9分会场摘要集[C];2012年
7 段海波;杨峗金;丁中涛;曹秋娥;;丹参中三种丹参酮的区带毛细管电泳分析[A];中国化学会第十五届全国有机分析及生物分析学术研讨会论文集[C];2009年
8 武静;陈巍;屈锋;;IgG与DNA文库相互作用的毛细管电泳方法研究[A];全国生物医药色谱学术交流会(2010景德镇)论文集[C];2010年
9 邸欣;王晓晖;范岩;孙琦为;;毛细管区带电泳法测定鱼腥草素钠片的含量[A];第十五次全国色谱学术报告会文集(下册)[C];2005年
10 曲宁;陈竞;夏弈明;;毛细管电泳测定血清胸腺因子方法的研究[A];中国营养学会第六届微量元素营养学术会议论文摘要汇编[C];1999年
相关重要报纸文章 前10条
1 长春应化所;毛细管电泳电化学发光检测仪研发成功[N];中国电子报;2003年
2 白毅 于洋;长春应化所在电化学领域取得创新性成果[N];中国医药报;2010年
3 记者任福海;化学生物分析平台添新成员[N];中国技术市场报;2010年
4 于柏林;毛细管电泳微型分析仪研制成功[N];中国化工报;2009年
5 刘春;毛细管电泳电化学发光微型综合分析仪通过鉴定[N];中国医药报;2009年
6 ;罗国安破解中药秘诀的人[N];中国高新技术产业导报;2004年
7 ;飞速发展的微流体芯片[N];中国医药报;2002年
8 ;北京地区PKU筛查、诊疗及基因分析[N];中国医药报;2003年
9 记者 蔡忠仁;专家研讨离子色谱技术新课题[N];中国化工报;2008年
10 记者赵伟 通讯员于柏林;微型综合分析仪在长通过验收[N];长春日报;2009年
相关博士学位论文 前10条
1 柏建国;毛细管电泳及其电化学发光在食品和生物检测中的应用[D];吉林大学;2010年
2 董秀玲;临床毛细管电泳的研究[D];中国科学院大连化学物理研究所;2001年
3 石美;毛细管电泳/间接紫外法对离子的检测条件优化与理论分析[D];中国矿业大学;2011年
4 何新亚;以DNA为一方的分子间相互作用的毛细管电泳研究[D];中国科学院研究生院(大连化学物理研究所);2004年
5 朱华东;毛细管电泳在线富集新技术及新型FI-CE体系研究[D];兰州大学;2011年
6 齐莉;手性配体交换毛细管电泳方法发展及酶反应动力学的研究[D];河北大学;2011年
7 李永强;基于毛细管电泳的量子点生物探针分离检测新技术研究[D];华中科技大学;2011年
8 孙国祥;毛细管电泳基础理论与方法学及应用研究[D];沈阳药科大学;2003年
9 石先哲;基于毛细管电泳的基因分析方法及肿瘤遗传背景研究[D];中国科学院研究生院(大连化学物理研究所);2004年
10 熊建辉;毛细管电泳分离条件优化和谱图信息提取的化学计量学方法研究[D];中国科学院研究生院(大连化学物理研究所);2004年
相关硕士学位论文 前10条
1 问海芳;毛细管电泳电化学发光在某些局麻药分析中的应用研究[D];河北大学;2009年
2 凌妲思;电动流动分析系统以及毛细管电泳绿色前处理技术的研究[D];中国科学技术大学;2010年
3 王金妍;毛细管电泳—安培检测在食品及化妆品分析中的应用研究[D];华东师范大学;2010年
4 谢路冰;基于ARM的毛细管电泳高压电源设计[D];大连理工大学;2010年
5 温莹莹;定量结构—性质关系及其在毛细管电泳中的应用[D];烟台大学;2010年
6 张海涛;毛细管电泳—电化学检测在疾病监测和中药分析中的应用研究[D];华东师范大学;2010年
7 李娜;微流控芯片空间温度梯度毛细管电泳系统检测DNA突变的研究[D];东北大学;2008年
8 盖丽娟;提高毛细管电泳表征中药材重现性的方法研究[D];河北大学;2010年
9 史海军;两种环糊精衍生物在毛细管电泳拆分常见手性药物中的应用研究[D];兰州大学;2010年
10 银慧慧;毛细管电泳—电化学发光在三种含胺类药物分析中的研究与应用[D];广西师范大学;2010年
,本文编号:2146381
本文链接:https://www.wllwen.com/xiyixuelunwen/2146381.html