钠泵α2亚基M4-M5区的克
[Abstract]:Na~+, K~+-ATPase, also known as sodium pump, is a special membrane-binding protein ubiquitous in higher eukaryotic cell membranes. It plays an important role in maintaining the balance of osmotic pressure in vivo, stabilizing cell membrane potential, signal transduction and so on. Na~+, K~+-ATPase is a heterodimer composed of alpha and beta subunits, in which alpha subunits are catalysts. Sodium pump alpha subunits have four subtypes, alpha 1, alpha 2, alpha 3, and alpha 4, with different functions and species specificity. Recent studies have shown that sodium pump alpha 2 is involved in the catalytic hydrolysis of ATP. In this study, we intend to construct a prokaryotic expression system of sodium pump alpha2 subunit M4-M5 intramembrane protein BB4-5, express and purify the target protein, prepare monoclonal antibodies against Na + - K + - ATPase alpha2 subunit, and further study the mechanism of action of sodium pump alpha2 subunit in vivo and the relationship between sodium pump alpha2 subunit and disease occurrence. Lay the foundation.
1. Cloning and expression of M4-M5 region protein of sodium pump subunit alpha 2. Objective: To construct the expression vector of M4-M5 region protein of sodium pump subunit alpha 2 by gene recombination technique. The protein was obtained by IPTG induction. The protein was purified by protein purification technique to provide antigen for the preparation of sodium pump subunit alpha 2 monoclonal antibody.
METHODS: (1) Construction of the cloning vector of sodium pump alpha 2 subunit M4-M5. The gene fragment BB4-5 of the M4-M5 region of the alpha 2 subunit was amplified by PCR using plasmid YhNalpha2 (containing the cDNA sequence of human sodium pump alpha 2 subunit) as template. The gene fragment BB4-5 was tailed to the cloning vector pGM-T and transformed into E. coli DH5a. The positive clone was selected and the plasmid PGMT-BB4-5 was obtained. Construction of the white expression system. The target gene fragment was cut from the plasmid PGMT-BB4-5, linked to the expression vector pET28b (+) by double digestion and transformed into Escherichia coli Rosetta2. The plasmid pET28b (+) -BB4-5 was obtained by double digestion to verify the correct sequence of the target gene. 1% of the expressed strain was inoculated and induced by IPTG with the final concentration of 0.4 mM. SDS-PAGE electrophoresis was used to detect the expression of the recombinant protein. (3) Purification of the recombinant protein: fragmentation of the bacteria, SDS-PAGE analysis of the existence of the target protein, denaturation and renaturation of the inclusion body, purification of the inclusion body with Ni-NTA affinity column, detection of the purity of the target protein. (4) Western blotting analysis of the recombinant protein: purification of Ni2~+ affinity chromatography after melting. After SDS-PAGE protein electrophoresis, the synthase protein was transferred to the nitrocellulose membrane, blocked, added sodium pump alpha 2 subunit antiserum or anti-His antibody, washed, developed by DAB color reagent kit, and photographed by gel imager.
Results: (1) The gene fragment BB4-5 was amplified by PCR using plasmid YhNalpha2 as template, and the product was detected by 1% agarose gel electrophoresis. The product was connected to pGM-T vector and transformed into E. coli DH5alpha. The positive clones were selected and amplified, and the plasmid was extracted. The results of double enzyme digestion and sequencing showed that the gene sequence was sequenced. (2) The target gene fragment was linked to the same double-digested PET28b (+) expression vector, transformed Rosetta2 receptor cells, and screened recombinant plasmids on Kan-containing platforms. The results of double-digestion showed that the protein expression system was successfully constructed. After fragmentation, SDS-PAGE electrophoresis showed that the expressed product was mainly in the form of inclusion body. The inclusion body was denatured by guanidine hydrochloride and renatured by gradient dilution. The purified protein was purified by Ni-NTA affinity column. (4) The expression product BB4-5 was analyzed by Western blotting and could be used as an antibody against sodium pump alpha2 subunit and anti-Hist subunit. Body specific binding.
CONCLUSION: The expression vector pET28b (+) - BB4-5 of sodium pump subunit M4-M5 protein was successfully constructed and expressed by IPTG and purified by Ni-NTA affinity column.
Two, preparation and identification of sodium pump alpha 2 subunit monoclonal antibody
Objective: To immunize BALB/c mice with recombinant protein of intramembrane region of sodium pump alpha 2 subunit M4-M5 as antigen, prepare monoclonal antibody by hybridoma technique, and identify the characteristics of monoclonal antibody by indirect ELISA and immunoblotting, so as to explore the mechanism of action of sodium pump alpha 2 subunit in vivo and its relationship with disease.
Methods: (1) BALB/c mice were immunized with purified protein of alpha 2 subunit for 6-8 weeks. (2) Monoclonal antibodies against alpha 2 subunit were screened by hybridoma technique. Spleen cells (B lymphocytes) of immunized animals were hybridized with Sp2/0 myeloma cells, positive (antibody secretion) cells were screened by indirect ELISA, and positive cells were introduced by limited dilution method. The hybridoma cell lines secreting monoclonal antibodies stably were cloned and constructed. (3) The crude monoclonal antibodies against hybridoma were prepared from ascites of mice and purified by octanoic acid-ammonium sulfate precipitation. (4) The subtypes of the antibodies were detected by Sigma mouse mAb Ig subclass detection kit. (5) Western-blotting. (6) The affinity constants of antibodies were determined by indirect ELISA with reference to Beatty's method.
Results: (1) After 6-8 weeks of immunization, the antibody titers of BALB/c mice were all above 1:50 000. (2) Sp2/0 myeloma cells were fused with normal method and screened by indirect ELISA. The positive pore was detected to be 14, and two strains with high titer were obtained after cloning. (3) Mice were inoculated with hybridoma cell lines, ascites were collected and purified by octanoic acid-ammonium sulfate precipitation method. The purified mAb. (4) Both mAb subtypes were detected to be IgG2a by mouse mAb Ig subclass detection kit. (5) Western-blotting results showed that the two mAb strains were specifically bound to intramembrane protein of sodium pump M4-M5. The mAb affinity constants of the two cell lines were 3.51 x 108L/ mol and 5.88 x 107 L/ mol., respectively.
CONCLUSION: Two monoclonal antibodies were successfully prepared by hybridoma technique and identified by indirect ELISA and Western blot, using recombinant M4-M5 intramembrane protein as antigen. Basics.
【学位授予单位】:河北医科大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:R363
【相似文献】
相关期刊论文 前10条
1 韩峰,刘德铮,肖詹蓉,项金忠,张鹏飞;百日咳毒素各亚基基因的克隆与表达及其重组亚基的免疫学特性评价[J];中华微生物学和免疫学杂志;1996年01期
2 刘泽军;人LDH-M亚基遗传变异的多态性[J];国外医学.遗传学分册;1998年06期
3 袁建达,邵志敏,韩企夏,沈镇宙;整合素_α5亚基蛋白的表达与乳腺癌病理和临床的关系[J];中华医学杂志;1999年03期
4 李占江,何大淹,李中军,邱东旭,刘云启,焦献云,蔡孟深;糖类研究——Ⅺ.合成2,3-异丙亚基核糖的一种新方法[J];北京大学学报(医学版);1991年05期
5 柏干荣,陆松敏;线粒体DNA编码细胞色素氧化酶亚基基因的进展[J];医学分子生物学杂志;2003年06期
6 孙洋,岳瑛,刘军,冯书章,姜力;肠出血性大肠杆菌志贺毒素的研究进展[J];吉林医学;2002年05期
7 姚振环;应用M-亚基抑制剂在血清电泳中分离LD_1活力[J];中国厂矿医学;1995年02期
8 谭小玲,柳君泽,黄小勇;建立尿素-SDS-PAGE分离COX亚基技术[J];第三军医大学学报;2003年02期
9 陈益,汤钊猷,周信达;铁蛋白亚基单克隆抗体对肝癌患者血清铁蛋白亚基组成的分析[J];肿瘤;1994年01期
10 贾弘 ;nAchRγ──亚基基因表达调控[J];海南医学院学报;1995年01期
相关会议论文 前10条
1 倪张林;魏家绵;;利用缺失研究叶绿体ATP合酶δ亚基的结构和功能[A];中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编[C];2003年
2 李利;张红平;吴登俊;;南江黄羊Fshβ亚基基因内含子Ⅰ序列分析[A];中国畜牧兽医学会2004学术年会暨第五届全国畜牧兽医青年科技工作者学术研讨会论文集(上册)[C];2004年
3 柳君泽;谭小玲;;缺氧大鼠脑线粒体COX活性及亚基Ⅰ、Ⅳ表达协调性研究[A];中国生理学会第21届全国代表大会暨学术会议论文摘要汇编[C];2002年
4 申屠旭萍;俞晓平;吕仲贤;陈建明;郑许松;徐红星;张珏锋;陈列忠;;海藻糖酶抑制剂—井冈霉亚基胺A的研究进展[A];当代昆虫学研究——中国昆虫学会成立60周年纪念大会暨学术讨论会论文集[C];2004年
5 王俊;王林林;邱丽娟;;大豆β亚基低含量遗传机理研究[A];2008中国作物学会学术年会论文摘要集[C];2008年
6 周先锁;袁勤生;;SOD和SOR的比较[A];第六届全国SOD学术研讨会论文集[C];2009年
7 王燕菲;;转羧酶中央亚基12S三维结构的测定[A];中国生物化学与分子生物学会第八届会员代表大会暨全国学术会议论文摘要集[C];2001年
8 朱晓峰;杜林方;;蛋白酶解用于放氧核心复合物亚基相对位置的初步研究[A];中国生物化学与分子生物学会第八届会员代表大会暨全国学术会议论文摘要集[C];2001年
9 石晓冰;魏家绵;沈允钢;;叶绿体ATP合酶CF_1与CF_o亚基间的相互作用[A];全国植物光合作用、光生物学及其相关的分子生物学学术研讨会论文摘要汇编[C];2001年
10 袁小瑜;陈方平;王光平;解勤之;蹇在伏;付敢;;血小板膜糖蛋白亚基á·b~(A446P)突变对细胞表面á·b(?)3复合物表达的影响[A];第九届全国实验血液学会议论文摘要汇编[C];2003年
相关重要报纸文章 前10条
1 佳宜;诺亚基欲引领新一代移动运算装置[N];电子资讯时报;2005年
2 吴钟华;胡亚基——中国第一任驻外领事[N];人民政协报;2002年
3 佳宜;诺亚基攻占新兴国家市场妙方[N];电子资讯时报;2004年
4 耿挺;癫痫病防治将有新靶点[N];上海科技报;2007年
5 杜朋举;赵正永会见克罗地亚客人[N];陕西日报;2007年
6 程武;“柏亚创造”撬动日化产业升级[N];中华工商时报;2007年
7 杨二;柏亚日化基地落户广东汕头[N];中国质量报;2007年
8 早报记者 贺宁;三亚基地启用 春秋航空织旅游航线网[N];东方早报;2007年
9 胡德荣;“亚基”为抑制癫痫提供药物新靶点[N];健康报;2007年
10 一凡;海狮:合资中的艰难历程[N];国际商报;2003年
相关博士学位论文 前10条
1 周婷婷;钠离子通道β4亚基在帕金森病中的作用研究[D];第二军医大学;2012年
2 王涛;四川小麦高分子量麦谷蛋白新亚基5’+12的分子生物学与品质改良策略研究[D];四川农业大学;2004年
3 王英伟;神经病理性疼痛中钠通道β亚基的可塑性和功能研究[D];第二军医大学;2006年
4 任育红;新型重组别藻蓝蛋白亚基的表达和生物活性的初步研究[D];中国科学院研究生院(海洋研究所);2005年
5 李勇;水氮互作对小麦谷蛋白亚基以及谷蛋白大聚合体粒度分布的调控[D];山东农业大学;2011年
6 张肖飞;小麦低分子量麦谷蛋白基因的鉴定和功能分析[D];中国农业科学院;2012年
7 倪张林;叶绿体ATP合酶CF_1的小亚基结构与功能[D];中国科学院研究生院(上海生命科学研究院);2004年
8 程西永;不同区域小麦种质资源遗传多样性研究[D];河南农业大学;2010年
9 郭凤;自发性癫痫大鼠海马电压门控性钠通道的表达研究[D];中国医科大学;2009年
10 何漪;大豆NDH复合体及其在盐胁迫中的作用[D];浙江大学;2012年
相关硕士学位论文 前10条
1 路建龙;春小麦籽粒品质与兰州拉面关系的研究[D];甘肃农业大学;2004年
2 肖英华;野生二粒麦(T.dicoccoides)谷蛋白亚基双向电泳分析及其LMW-GS 编码基因的分子克隆[D];首都师范大学;2004年
3 张s,
本文编号:2210974
本文链接:https://www.wllwen.com/xiyixuelunwen/2210974.html