同步EEG-fMRI融合技术与情感决策问题应用研究
发布时间:2018-03-05 15:07
本文选题:脑电 切入点:功能磁共振成像 出处:《常州大学》2017年硕士论文 论文类型:学位论文
【摘要】:脑电(electroencephalogram,EEG )与功能磁共振成像(functional magnetic resonance imaging,fMRI)作为无创的神经成像技术,已经成为脑科学研究中的两种重要途径。两者信号具有互补性:EEG时间分辨率高而fMRI空间分辨率高,为EEG-fMRI融合技术提供了可能。研究表明,同步EEG-fMRI融合技术对于了解大脑的基本功能,研究神经精神类疾病和探讨认知心理学机制具有重要的作用。执行功能指对思想和行动进行有意识控制的心理过程。它与多种能力(如,注意、规则运用、心理理论等)的发展有关。热执行功能与社会化和高度的情感卷入密切联系,对认知和情感的发展具有重要的指导意义。情感决策是一种同时包含情绪和逻辑因素的决策过程,是热执行功能的一部分,且作为一种重要的社会适应能力,近年来受到了越来越多的关注。本文运用预测融合技术分析赌博范式同步EEG-fMRI数据。首先同步采集20名健康成年人经典赌博范式EEG-fMRI数据。然后对EEG数据采用相对功率谱分析等方法,提取相关反馈负波、alpha频段相对能量、theta频段相对能量特征;对fMRI数据采用k-均值聚类算法制作mask并提取特征。最后,利用fMRI数据构造广义线性模型,并分别使用EEG特征作为其回归项,对比三种不同回归项下的预测融合结果,从而分析情感决策问题。实验结果表明:一、被试在受到奖励刺激时,明显激活了腹侧纹状体、内侧前额叶、眶额皮质和扣带回等奖赏回路中的脑区。二、预测融合分析结果与传统fMRI分析结果相比,提取出了更多与奖惩相关的激活脑区,如眶额皮质和后扣带回,这两者都与被试受到反馈刺激后的主观情绪相关。三、EEG相对能量作为广义线性模型回归项的融合结果与反馈相关负波作为回归项的结果相比,提取出了腹侧纹状体区域,这一脑区与被试对奖惩的期待密切相关。且以theta频段相对能量作为回归项提取出的大脑激活强度最强(用alpha频段能量对比theta频段能量分析得到的激活强度对比:P=0.002)。总之,EEG-fMRI预测融合技术能更精确的反映被试受到奖惩反馈刺激时的神经活动,描绘脑区激活情况,从而更准确的分析情感决策问题,为研究热执行功能提供科学依据。
[Abstract]:Electroencephalograms (EEG) and functional magnetic resonance imaging of MRI (functional magnetic resonance imaging), as non-invasive neuroimaging techniques, have become two important approaches in the research of brain science. This provides the possibility for EEG-fMRI fusion technology. Studies have shown that synchronous EEG-fMRI fusion technology is useful in understanding the basic functions of the brain. The study of neuropsychiatric disorders and the exploration of cognitive psychological mechanisms play an important role. Executive function refers to the psychological process of conscious control of thought and action. It is associated with a variety of abilities (e.g. attention, application of rules, etc.). The hot executive function is closely related to socialization and high emotional involvement, and has important guiding significance for the development of cognition and emotion. Emotional decision-making is a decision-making process that includes both emotional and logical factors. Is part of the thermal executive function, and as an important social adaptability, In recent years, more and more attention has been paid. In this paper, we use the prediction fusion technique to analyze the synchronous EEG-fMRI data of gambling paradigm. Firstly, we synchronously collect 20 healthy adults' EEG-fMRI data of classical gambling paradigm. Then we use the relative work to the EEG data. Rate spectrum analysis and other methods, The relative energy characteristics of the fMRI band are extracted from the relative energy of the correlation feedback negative wave band alpha band, and the mask feature is extracted from the fMRI data by using the k-means clustering algorithm. Finally, the generalized linear model is constructed by using the fMRI data. Using the EEG feature as its regression term, the prediction fusion results of three different regression items were compared to analyze the affective decision making problem. The experimental results showed that: first, the subjects activated the ventral striatum obviously when they were stimulated by reward. The medial prefrontal lobe, orbitofrontal cortex and cingulate gyrus, etc. Second, compared with the traditional fMRI analysis, the predicted fusion analysis results extracted more activated brain regions related to rewards and punishments, such as the orbital frontal cortex and the posterior cingulate gyrus. The relative energy of EEG was used as the fusion result of generalized linear model regression term and the feedback correlation negative wave was used as the regression term to extract the ventral striatum region. This brain area is closely related to the expectation of reward and punishment, and the brain activation intensity extracted from the relative energy of the theta band as the regression term is the strongest (the activation intensity obtained from the energy analysis of the alpha band compared with the theta band energy analysis shows that the activation intensity is higher than that of the theta band energy analysis. In a word, EEG-fMRI predictive fusion technique can more accurately reflect the neural activity of subjects when they are stimulated by rewards and punishment feedback. The activation of brain region is described to analyze affective decision making more accurately and to provide scientific basis for the study of hot executive function.
【学位授予单位】:常州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;R338
【参考文献】
相关期刊论文 前4条
1 邹凌;徐逸;周仁来;;密度K-means算法在认知重评脑功能连接中的应用[J];计算机辅助设计与图形学学报;2015年05期
2 师艺峰;谢延风;;EEG-fMRI技术与癫痫致痫灶定位的研究进展[J];西部医学;2012年06期
3 雷鹏;陈旭;;情感决策及其影响因素研究述评[J];心理研究;2011年05期
4 成强;翟国德;庞琦;;颞叶癫痫致痫灶定位方法准确性临床研究[J];中华神经外科疾病研究杂志;2010年05期
相关博士学位论文 前1条
1 雷旭;基于贝叶斯理论的EEG-fMRI融合技术研究[D];电子科技大学;2011年
,本文编号:1570747
本文链接:https://www.wllwen.com/yixuelunwen/jichuyixue/1570747.html