Ghrelin通过MAPK通路诱导兔BMSCs增殖及成骨分化的机制研究
本文选题:骨髓基质干细胞 + 内源性脑肠肽 ; 参考:《重庆医科大学》2016年博士论文
【摘要】:骨髓基质干细胞(bone marrow mesenchymal stem cells,BMSCs)是干细胞家族的主要成员,其最初在骨髓被发现,它具有多项功能诸如,分化潜能,造血支持,免疫调节等。其增殖和分化为现如今的热点。在1999年,Ghrelin被日本学者Kojima等发现。经研究发现,它是由28个氨基酸残基组成,分子量为3.3KD。Ghrelin是生长激素促分泌素受体(Growth hormone secretagogue receptor,GHS-R)的内源性配体,当它与其受体GHS-R结合后会产生具有很强的促进生长激素(Growth hormone,GH)释放的作用。对MAPK途径的研究主要表现在哺乳动物细胞中的研究,其主要方法是过表达、失活、基因沉默等方法。MAPK信号通路主要有4种类型,用它们的核心命名为MAPK。多种生理活动的调节均由其参与。每条通路都可以和其它通路相整合交叉,细胞的命运主要由他们的信号强弱及活化程度决定。目的:本研究就ghrelin对兔BMSCs(rBMSCs)的增殖与分化的作用,及ghrelin通过哪种途径来实现对兔BMSCs的增殖与分化的作用机制进行研究。方法:从健康清洁新西兰大白兔体内分离纯化得到rBMSCs。传代后免疫荧光检测rMSCs细胞标记物CD44、CD34的表达,用MTT检测不同代的rmscs在10天内的生长情况,从而得到最佳的生长时间。利用mtt法检测不同浓度的ghrelin对rmscs的增殖作用,从而找到ghrelin对rmscs的增殖作用的最佳的作用浓度与作用时间。用westernblot的方法来检测ghrelin对rmscs不同时间点的mapk通路的关键蛋白(erk1/2,p38和jnk)的磷酸化情况,来研究ghrelin发挥其作用的主要通路。为了进一步研究ghrelin对rmscs增殖的作用,将mapk通路的关键蛋白进行抑制,用westernblot来检测其下游蛋白的磷酸化情况,及细胞增殖情况。同时用ghrelin受体抑制剂作用于细胞,用westernblot方法检mapk通路的关键蛋白(erk1/2,p38和jnk)的磷酸化情况,用mtt法检测细胞增殖情况。同时用ghrelin对rbmcs向成骨细胞分化的影响进行研究。用westernblot检测加入ghrelin后成骨细胞标志因子alp,runx2和osterix的表达情况,同时检测mapk通路的关键蛋白(erk1/2,p38和jnk)的磷酸化情况,来确定ghrelin对rbmcs向成骨细胞分化影响的作用机制。用mapk通路的关键蛋白的抑制剂作用于细胞,及ghrelin受体抑制剂作用于rbmcs向成骨细胞分化的过程,在分别检测alp,runx2和osterix的表达情况。结果:由新西兰大白兔提rmscs,经培养得到较纯的细胞,其在第四代的生长最佳,且cd44有强烈表达,而cd34则没有表达。ghrelin对rmscs有明显的促进生长的作用。ghrelin对rmscs的最佳作用浓度为600ng/ml,作用时间为第三天。用600ng/ml的ghrelin作用于rbmcs并于0,20,40和60min后,磷酸化的erk1/2的表达量在ghrelin作用后随着作用时间的增加而增加(p0.05)。且在40min时达到量高而后保持不变(p0.05)。说明ghrelin对rbmcs的作用是通过erk1/2通路起作用的。为了进一步证明erk1/2通路的做用,用erk1/2磷酸化抑制剂u0126作用细胞,发现ghrelin对细胞的促进生长作用消失。当细胞在600ng/mlghrelin的作用下,加入ghrelin受体抑制剂,抑制了细胞的生长。从而说明在ghrelin促进rmscs生长增殖时也是ghrelin首先与其受体结合然后才发挥的促进作用的。在本研究中将alp,runx2和osterix作为rbmscs向成骨细胞分化的检测指标,结果表明在ghrelin存在的情况下,alp,runx2和osterix的表达量升高,更有利于rbmscs向成骨细胞分化。为了进一步研究ghrelin促进rbmscs向成骨细胞分化的作用机制,本研究对mapk通路的主要蛋白erk1/2,jnk和p38磷酸化情况进行了检测。结果表明ghrelin促进rbmscs向成骨细胞分化主要是通过erk1/2通路来实现的,为了进一步证明此机制,我们用erk1/2磷酸化抑制剂u0126作用于rbmscs,结果表明erk1/2磷酸化被抑制,而alp,runx2和osterix这三种蛋白的表达量均显著下降,且低于只加地塞米松组的表达量,说明rbmscs向成骨细胞分化过程减慢。进一步证明了ghrelin促进rbmscs向成骨细胞分化主要是通过erk1/2通路来实现的。为了证明ghrelin促进rbmscs向成骨细胞分化的实现是ghrelin先与其受体结合然后才发挥其作用的,本研究还用ghrelin受体抑制剂作用于rbmscs后磷酸化的erk1/2,jnk,p38的表达量在不同的时间段均没有发生明显的变化。同时检测了细胞中alp,runx2和osterix的表达量也没有变化。表明ghrelin的促进作用受到抑制。结论:本研究证明了ghrelin促进rbmscs向成骨细胞分化的机制是ghrelin先与其受体结合然后通过erk1/2通路促进rbmscs的增殖及向成骨细胞分化的。
[Abstract]:Bone marrow stromal cells (bone marrow mesenchymal stem cells, BMSCs) are the main members of the stem cell family. Originally found in the bone marrow, it has a number of functions such as differentiation potential, hematopoiesis support and immunoregulation. Its proliferation and differentiation are now hot spots. In 1999, Ghrelin was found by Japanese scholar Kojima, and so on. The study found that the bone marrow stromal stem cells were found in 1999. It is composed of 28 amino acid residues, and the molecular weight of 3.3KD.Ghrelin is an endogenous ligand for the Growth hormone secretagogue receptor (GHS-R) receptor. When it is combined with its receptor GHS-R, it produces a strong role in promoting the release of growth hormone (Growth hormone, GH). The main table for the MAPK pathway is studied. Now the main methods in mammalian cells are over expression, inactivation, and gene silencing. The.MAPK signaling pathway is mainly 4 types, and the regulation of various physiological activities, named MAPK., is involved. Each pathway can be intersecting with other pathways, and the fate of the cells is mainly due to their strong signals. The purpose of this study is to study the effect of ghrelin on the proliferation and differentiation of rabbit BMSCs (rBMSCs), and the mechanism of the action mechanism of ghrelin on the proliferation and differentiation of rabbit BMSCs. Method: to isolate and purify New Zealand white rabbits from healthy and clean New Zealand white rabbits, and to detect rMSCs finely after rBMSCs. passages. The expression of cellular marker CD44, CD34, the growth of rMSCs in different generations in 10 days was detected by MTT, and the optimum growth time was obtained. The MTT method was used to detect the proliferation of ghrelin at different concentrations to rMSCs, and the optimum concentration and time of action of ghrelin to rMSCs proliferation was found. A Westernblot method was used to detect the effect of ghrelin on the proliferation of rMSCs. Ghrelin studies the phosphorylation of key proteins (erk1/2, p38 and JNK) of the MAPK pathway at different time points of rMSCs to study the main pathway of ghrelin to play its role. In order to further study the effect of ghrelin on rMSCs proliferation, the key proteins of the MAPK pathway are suppressed, and the phosphorylation of the downstream proteins in the MAPK pathway is detected by Westernblot. At the same time, the cell proliferation was detected by the ghrelin receptor inhibitor, and the phosphorylation of the key proteins (erk1/2, p38 and JNK) in the MAPK pathway was detected by the Westernblot method. The cell proliferation was detected by MTT method. The effect of ghrelin on the differentiation of rbmcs into osteoblasts was studied with ghrelin. Westernblot was used to detect the osteoblasts after ghrelin. The expression of marker factors ALP, Runx2 and osterix, and the phosphorylation of key proteins (erk1/2, p38 and JNK) of the MAPK pathway to determine the mechanism of ghrelin's effect on the differentiation of rbmcs into osteoblast. The inhibitor of the key protein of the MAPK pathway acts on the cells, and the ghrelin receptor inhibitor acts on the rbmcs to osteoblasts. The process of differentiation, the expression of ALP, Runx2 and osterix were detected respectively. Results: a New Zealand white rabbit was given rMSCs and cultured to obtain more pure cells. The growth of the fourth generation was the best, and CD44 had a strong expression, while CD34 did not express the effect of.Ghrelin on rMSCs. The best concentration of.Ghrelin for rMSCs was the concentration of CD34. 600ng/ml, the action time is third days. The expression of phosphorylated erk1/2 is increased after ghrelin action with the action of 600ng/ml ghrelin on rbmcs and after 0,20,40 and 60min (P0.05). And it reaches a high quantity at 40min and then remains unchanged (P0.05). In order to further prove the use of the erk1/2 pathway and use the erk1/2 phosphorylation inhibitor U0126 to act on the cells, it is found that ghrelin can promote the growth of the cells. When the cells are under the action of 600ng/mlghrelin, the ghrelin receptor inhibitors are added to inhibit the growth of the cells. Thus, it is said that ghrelin promotes rMSCs proliferation and ghrelin in ghrelin. In this study, ALP, Runx2 and osterix were used as an indicator of rBMSCs differentiation to osteoblasts in this study. The results showed that, in the presence of ghrelin, the expression of ALP, Runx2 and osterix increased, which was more conducive to the differentiation of rBMSCs into osteoblasts. In order to further study ghrelin to promote RB. The mechanism of MSCs to osteoblast differentiation, this study examines the major protein erk1/2, JNK and p38 phosphorylation of the MAPK pathway. The results show that ghrelin promotes the differentiation of rBMSCs into osteoblasts mainly through erk1/2 pathway. In order to further prove this mechanism, we use erk1/2 phosphorylation inhibitor U0126 to act on RBMs. CS, the results showed that the phosphorylation of erk1/2 was inhibited, and the expression of the three proteins of ALP, Runx2 and osterix were significantly decreased, and lower than that of only dexamethasone group, which indicated that rBMSCs slowed down the differentiation process of osteoblasts. It further proved that ghrelin promotes rBMSCs to osteogenic cell differentiation mainly through erk1/2 pathway. It is demonstrated that ghrelin promotes the differentiation of rBMSCs into osteoblasts by combining ghrelin with its receptor before playing its role. This study also uses the ghrelin receptor inhibitor to phosphorylate erk1/2 after rBMSCs, JNK, and p38 has no significant changes at different time periods. At the same time, ALP, Runx2 and OSTE in cells are detected. The expression of Rix has not changed. It shows that the promoting effect of ghrelin is inhibited. Conclusion: This study demonstrated that the mechanism of ghrelin to promote the differentiation of rBMSCs into osteoblasts is that ghrelin combines with its receptor first and promotes the proliferation of rBMSCs through the erk1/2 pathway and differentiation into osteoblasts.
【学位授予单位】:重庆医科大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R329.2
【相似文献】
相关期刊论文 前10条
1 苗培;杨国宇;惠永华;;Ghrelin的研究进展[J];乳业科学与技术;2007年01期
2 吕善潮;张胜利;;Ghrelin及相关基因的研究进展[J];上海畜牧兽医通讯;2007年03期
3 王丽晔;李峰;宋月晗;马佳美;李思耐;关冰河;;Ghrelin发现和结构的研究现状[J];现代生物医学进展;2011年18期
4 李双月,孙长凯;Ghrelin研究及其临床意义[J];国外医学(生理、病理科学与临床分册);2003年02期
5 曹贵方,吕东媛,白春玲,火焱,旭日干;一种新的脑肠肽激素——Ghrelin[J];畜牧与饲料科学;2004年06期
6 黄治国,熊俐,刘振山,刘守仁,谢庄,刘国庆;Ghrelin—一种多功能激素[J];中国畜牧兽医;2005年08期
7 陈斌,吴天星;Ghrelin生物学功能的研究进展[J];中国畜牧杂志;2005年10期
8 肖园;王伟;;Ghrelin与生长激素关系的研究进展[J];国外医学.内分泌学分册;2005年06期
9 火焱;杨银凤;;脑肠肽ghrelin的研究进展[J];中国兽医科学;2006年03期
10 高庆;张克英;;Ghrelin:一个重要脑肠肽生物学效应的研究进展[J];中国畜牧杂志;2006年07期
相关会议论文 前10条
1 聂庆华;方梅霞;张细权;;动物生长素(Ghrelin)基因的比较分析[A];第十次全国畜禽遗传标记研讨会论文集[C];2006年
2 陈黎龙;江青艳;张永亮;;Ghrelin与动物的采食调控[A];全国动物生理生化第十次学术交流会论文摘要汇编[C];2008年
3 赵洁;张金山;李臻;张远强;;Ghrelin在小鼠应激性胸腺萎缩中的表达及其意义[A];中国解剖学会第十一届全国组织学与胚胎学青年学术研讨会论文汇编[C];2009年
4 陈黎龙;江青艳;傅伟龙;;Ghrelin及其受体研究概况[A];动物生理生化学分会第八次学术会议暨全国反刍动物营养生理生化第三次学术研讨会论文摘要汇编[C];2004年
5 林浩然;;Ghrelin:结构、分布和生理功能[A];第二届中国动物学会比较内分泌学分会和发育生物学分会联合学术研讨会论文集[C];2005年
6 火焱;杨银凤;王秀梅;;生长素-Ghrelin的研究进展[A];中国畜牧兽医学会动物解剖学及组织胚胎学分会第十四次学术研讨会论文集[C];2006年
7 李乐;张佳林;李晓航;张城硕;程颖;赵宁;刘永锋;;Ghrelin对地塞米松诱导胰岛细胞凋亡保护作用的研究[A];2012中国器官移植大会论文汇编[C];2012年
8 李玉姝;金本巨哲;有安宏之;岩仓浩;中尾一和;赤水尚史;;甲状腺激素对Ghrelin基因转录和分泌的影响[A];2008中国医师协会内分泌代谢科医师分会年会论文汇编[C];2008年
9 胡翠竹;胡健;霍海洋;赵卫华;;Ghrelin抑制尼古丁诱导的人脐静脉内皮细胞趋化因子的表达[A];中华医学会第11次心血管病学术会议论文摘要集[C];2009年
10 苏娟;雷治海;张文龙;武枫林;施玉萍;姚远;杨桂红;;Ghrelin对猪生殖调节的体外研究[A];中国畜牧兽医学会动物解剖学及组织胚胎学分会第十六次学术研讨会论文集[C];2010年
相关重要报纸文章 前1条
1 崔翔宇;Ghrelin:其结构及生理学的重要性 Discovery of Ghrelin:Its Structure and Physiological Significance[N];中国医药报;2006年
相关博士学位论文 前10条
1 叶博;短链脂肪酸促进人和小鼠gastroids中产ghrelin细胞分化和小鼠胃排空的生理机制研究[D];第二军医大学;2015年
2 周利;电针对Ghrelin介导的FD大鼠脑肠轴失衡调节作用的实验研究[D];湖北中医药大学;2015年
3 吴志勤;1.Ghrelin对糖尿病心肌病大鼠心功能保护效应及机制研究 2.大黄素对糖尿病心肌病大鼠心功能保护效应及机制研究[D];重庆医科大学;2015年
4 叶楠;Ghrelin通过MAPK通路诱导兔BMSCs增殖及成骨分化的机制研究[D];重庆医科大学;2016年
5 万晶晶;Ghrelin对巨噬细胞源性泡沫细胞形成的抑制作用及其机制研究[D];华中科技大学;2009年
6 王彦富;Ghrelin抗动脉粥样硬化的基础与临床研究[D];华中科技大学;2009年
7 董静;Ghrelin在糖尿病小鼠摄食调节与能量平衡中的作用[D];青岛大学;2005年
8 许岭翎;Ghrelin基因多态性与2型糖尿病及其危险因素的相关性研究[D];中国协和医科大学;2006年
9 杜改梅;断奶仔猪胃肠道Ghrelin表达及其对胃功能的调节[D];南京农业大学;2006年
10 杨丹;Ghrelin对肺动脉内皮细胞损伤的保护作用及其与内皮舒缩分子关系的研究[D];北京协和医学院;2013年
相关硕士学位论文 前10条
1 刘丽丽;原发性高血压患者血清Ghrelin和Hcy水平的变化及其临床意义[D];河北医科大学;2015年
2 黄雅懔;逍遥散对焦虑症大鼠胃肠道Ghrelin和Obestatin含量表达的调节作用[D];北京中医药大学;2016年
3 毛兰芳;平胃胶囊治疗肝郁脾虚型FD的临床观察及对CCK、Ghrelin影响的实验研究[D];甘肃中医药大学;2016年
4 李志平;四种证型慢性胃炎患者胃粘膜脑肠肽-Ghrelin、SST、MTL、GAS表达水平的研究[D];甘肃中医药大学;2016年
5 张娜;牦牛Ghrelin对其极端生境适应的分子机理[D];兰州大学;2016年
6 左旭阳;血清Ghrelin与单纯糖尿病、代谢正常肥胖及代谢综合征患者执行功能的相关性研究[D];安徽医科大学;2016年
7 张曼;驯鹿Ghrelin基因克隆及其在各器官内的表达定位研究[D];内蒙古农业大学;2016年
8 宫冰;Ghrelin对体外培养的中脑神经干细胞增殖和分化的影响[D];青岛大学;2016年
9 沈兆星;Ghrelin通过影响Dkk-1的表达调控WNT信号通路改善糖尿病大鼠认知功能[D];重庆医科大学;2016年
10 郭锐;壳聚糖纳米粒介导猪Ghrelin基因对小鼠生长的影响[D];华中农业大学;2008年
,本文编号:1946494
本文链接:https://www.wllwen.com/yixuelunwen/jichuyixue/1946494.html