IL-6体外诱导巨噬细胞M2样分化的机制研究
[Abstract]:BACKGROUND Macrophages are a group of cells with various characteristics in the human immune system, which play an important role in the body's defense against bacterial, viral and parasitic infections. It is a tumor-associated macrophage (TAMs). TAM is the aggregation and differentiation of peripheral circulating monocytes stimulated by local CCL2, macrophage colony-stimulating factor (M-CSF) and vascular endothelial growth factor (VEGF). Macrophages have two main phenotypes, M1 and M2. M1 macrophages can be induced by LPS or IFN-gamma. M1 macrophages are powerful effector cells that kill microorganisms, produce inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and IL-12, and play an important role in eliminating bacterial, viral and fungal infections. Instead, M2 macrophages produce IL-10 and transform growth factors. M2 macrophages also play an important role in tissue remodeling, parasitic infection, angiogenesis and tumor progression. Interleukin-6 is multipotent and can affect many functions of the body, such as vascular disease, lipid metabolism, insulin resistance and neuropsychological behavior. IL-6 is a STAT3 signaling pathway. A powerful activator, activated P-STAT3 signaling protein, translocates rapidly into the nucleus and binds to the recognition sequence of target genes such as cyclin D1, c-myc, and the promoter of VEGF, thereby increasing the transcription and expression of these target genes. In previous studies, we found that the expression of IL-6 in cancer tissues was higher than that in non-tumor tissues. At the same time, the infiltration of M2 macrophages was also increased in cancer tissues. By detecting the phenotypic characteristics of macrophages induced by IL-6 stimulation, we found that IL-6 could induce normal macrophages to differentiate into M2-like macrophages. The expression of IL-10 and TGF-beta increased, while the expression of IL-12p35 decreased. Objective: 1. To establish a cell model of macrophage differentiation induced by IL-6 in vitro and explore the effect of IL-6 on macrophage differentiation and the specific signal mechanism of inducing differentiation. CD14+ monocytes from peripheral blood (PBMC) of healthy adults were selected by sorting method. The purity of CD14+ monocytes was detected by flow cytometry. After 5 days of induction and differentiation by recombinant human macrophage colony-stimulating factor (M-CSF), macrophages were induced to differentiate into macrophages. After stimulation by IL-6, macrophages were further differentiated into M2 phenotypes. Real-time fluorescence quantitative PCR was used to detect the molecular marker (IL-10, TGF-beta). IL-6 could activate JAK-STAT3 signaling pathway. Activated STAT3 (p-stat3) could enter the nucleus, act on its downstream target genes and participate in transcriptional regulation. In this study, Western blot and immunofluorescence were used to confirm that IL-6 could activate STAT3-p-STAT3 signaling pathway. At the same time, small interfering RNA (si RNA) was used to interfere with STAT3 target gene. STAT3 expression in macrophages was silenced in advance. The expression of IL-10 and TGF-beta was detected by real-time fluorescence quantitative PCR. The regulatory role of STAT3 in the process of IL-6 induced macrophage differentiation was further explored. Invasion and cell proliferation assay (CCK8) was used to study the biological function of induced macrophages. Gastric cancer cells (AGS, SGC-7901) were co-cultured with IL-6-induced M2-like macrophage supernatant to study the effects of induced macrophages on the invasion and proliferation of gastric cancer cells. After nuclear cells differentiated into macrophages, the expression of IL-10, TGF-beta and IL-12p35 were increased and decreased by IL-6 stimulation. Moreover, with the increase of IL-6 stimulation concentration, the expression of IL-10 and TGF-beta in macrophages increased, while the expression of IL-12p35 decreased with the increase of IL-6 concentration. The expression of STAT3 and p-STAT3 in macrophages stimulated by IL-6 did not increase, but the expression of activated phosphorylated STAT3, p-STAT3, increased significantly in macrophages stimulated by IL-6. Immunofluorescence assay showed that a large number of activated p-STAT3 fluorescent signals were observed in the macrophages stimulated by IL-6, and the activated p-STAT3 was distributed in the nucleus of the cells. In the cell group, the expression of p-STAT 3 decreased. With the decrease of p-STAT 3 expression, the expression levels of IL-10 and TGF-beta were also lower than those in the non-silent group. 3. The supernatants of M2-like macrophages were co-cultured with two gastric cancer cell lines (AGS, SGC-7901). The results showed that the number of tumor cells passing through basement membrane (AGS 257.6 (+ 6.26) and SGC 218.6 (+ 4.62) in M2-like macrophage supernatant culture group was significantly higher than that in the corresponding control group (AGS 187.8 (+ 6.09) and SGC 152 (+ 7.91). Similarly, CCK8 proliferation test showed that the number of tumor cells passing through basement membrane in M2-like macrophage supernatant culture group was significantly higher than that in the corresponding control group. The OD450 value of gastric cancer cells in co-culture group at 72 h (AGS 1.25+0.12; SGC 1.33+0.14) was significantly higher than that of RPMI-1640 control group (AGS 0.90+0.02; SGC 0.98+0.07). Conclusion: 1. IL-6 induces macrophages to overexpress IL-10 and TGF-beta, whereas IL-12p35 is underexpressed. The induced macrophage phenotype is M2-like (IL-10 high TGF-beta high IL-12p35 low). At the same time, the expression of IL-10 and TGF-beta increases with the increase of IL-6 stimulation concentration, and the induction effect is IL-6 concentration-dependent.2, IL-6 induces macrophage fineness. During M2-like differentiation, JAK/STAT3 signaling pathway is activated, and activated p-STAT3 enters the nucleus, which promotes the expression of IL-10 and TGF-beta, inhibits the expression of IL-12p35, and participates in the regulation of IL-6-induced M2-like polarization of macrophages.3, IL-6-induced M2-like macrophages can promote the proliferation and migration of gastric cancer cells, and thus promote tumor. Progress.
【学位授予单位】:第三军医大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R392
【相似文献】
相关期刊论文 前10条
1 郑振群;;关于巨噬细胞的几个问题[J];山西医药杂志;1974年12期
2 ;豚鼠巨噬细胞经P_(204)处理后的抗石英细胞毒作用[J];国外医学参考资料(卫生学分册);1976年04期
3 邓侠进;;巨噬细胞的抗癌作用[J];遵义医学院学报;1979年02期
4 陆天才;;疾病对肺巨噬细胞的影响[J];煤矿医学;1982年01期
5 郭瑞清;祝彼得;;一种分离巨噬细胞的简单方法[J];滨州医学院学报;1990年02期
6 谢志坚;巨噬细胞异质性[J];医学综述;2001年06期
7 饶艳;运动及神经内分泌对巨噬细胞功能的调节[J];体育与科学;2002年05期
8 朱金元;;吸烟对肺巨噬细胞的影响[J];浙江医学教育;2003年01期
9 张俊峰;过氧化物酶体增殖物激活受体与单核/巨噬细胞系[J];医学综述;2004年03期
10 韦锦学;顾军;;巨噬细胞的激活诱导死亡[J];生命科学;2006年02期
相关会议论文 前10条
1 史玉玲;王又明;丰美福;;巨噬细胞激活作用的研究[A];中国细胞生物学学会第五次会议论文摘要汇编[C];1992年
2 吴国明;周辉;;巨噬细胞和创伤纤维化[A];2009年浙江省骨科学学术年会论文汇编[C];2009年
3 李奇;王海杰;;透明质酸对于淋巴结巨噬细胞运动的影响[A];解剖学杂志——中国解剖学会2002年年会文摘汇编[C];2002年
4 刘革修;欧大明;刘军花;黄红林;廖端芳;;丙丁酚在体外能抑制巨噬细胞脂质氧化介导的低密度脂蛋白氧化并调节氧化巨噬细胞的分泌功能[A];面向21世纪的科技进步与社会经济发展(下册)[C];1999年
5 叶金善;杨丽霞;郭瑞威;;环氧化酶-2/前列腺素E_2在血管紧张素Ⅱ刺激巨噬细胞表达细胞外基质金属蛋白酶诱导因子中的作用[A];第十三次全国心血管病学术会议论文集[C];2011年
6 秦帅;陈希;孔德明;;构建由绿色荧光标记巨噬细胞的转基因斑马鱼系[A];贵州省中西医结合内分泌代谢学术会论文汇编[C];2012年
7 武剑华;徐惠绵;;肿瘤相关巨噬细胞在胃癌中的相关研究[A];第9届全国胃癌学术会议暨第二届阳光长城肿瘤学术会议论文汇编[C];2014年
8 何军;;血凝素样氧化型低密度脂蛋白受体升高巨噬细胞内胆固醇水平[A];中华医学会第11次心血管病学术会议论文摘要集[C];2009年
9 宋盛;周非凡;邢达;;PDT诱导的凋亡细胞对巨噬细胞NO合成的影响[A];第七届全国光生物学学术会议论文摘要集[C];2010年
10 张磊;朱建华;黄元伟;姚航平;;血管紧张素Ⅱ对巨噬细胞(THP-1重细胞)凝集素样氧化低密度脂蛋白受体表达的影响[A];浙江省免疫学会第五次学术研讨会论文汇编[C];2004年
相关重要报纸文章 前10条
1 通讯员 李静 记者 胡德荣;恶性肿瘤巨噬细胞未必皆“恶人”[N];健康报;2014年
2 兰克;以尝试用巨噬细胞治瘫痪[N];科技日报;2000年
3 薛佳;免疫系统——人体的“卫士”[N];保健时报;2009年
4 记者 胡德荣;铁泵蛋白“维稳”铁代谢作用首次阐明[N];健康报;2011年
5 侯嘉 何新乡;硒的神奇功能[N];中国食品质量报;2003年
6 唐颖 倪兵 陈代杰;巨噬细胞泡沫化抑制剂研究快步进行[N];中国医药报;2006年
7 本报记者 任晓;周小川:M2目标强调货币供应不能过快[N];中国证券报;2013年
8 证券时报两会报道组;周小川:M2增13%强调货币供应不能太快[N];证券时报;2013年
9 方泉;股市资金面:M2的误区[N];证券时报;2009年
10 本报两会报道组;周小川:M2拟定13%是强调货币供应量增长不能太快[N];上海证券报;2013年
相关博士学位论文 前10条
1 周赤燕;巨噬细胞MsrA对动脉粥样硬化的干预研究[D];武汉大学;2013年
2 章桂忠;TIPE2蛋白调控细胞增殖和炎症的机制研究[D];山东大学;2015年
3 张瑜;DKK1抑制巨噬细胞内脂质沉积及其相关分子机制[D];山东大学;2015年
4 孟涛;异丙酚对心脏收缩功能的抑制作用及其对巨噬细胞分泌功能调节的机制研究[D];山东大学;2015年
5 周兴;基于酵母微囊构建新型口服巨噬细胞靶向递送系统的研究[D];第三军医大学;2015年
6 蒋兴伟;Tim-3对巨噬细胞极化的调控机制研究[D];中国人民解放军军事医学科学院;2015年
7 刘伯玉;清道夫受体A介导小鼠巨噬细胞吞噬钩端螺旋体研究[D];上海交通大学;2013年
8 杨绍俊;miRNA-155介导ESAT-6诱导巨噬细胞凋亡的分子机制及其在结核诊断中的作用[D];第三军医大学;2015年
9 翟光耀;单核/巨噬细胞Ly6C~(low)亚群在心肌梗死后瘢痕形成期的抗炎特性研究[D];北京协和医学院;2014年
10 韩露;TRB3介导的脂肪组织巨噬细胞极化与糖尿病冠状动脉病变关系的研究[D];山东大学;2015年
相关硕士学位论文 前10条
1 付小龙;IL-6体外诱导巨噬细胞M2样分化的机制研究[D];第三军医大学;2017年
2 马春梅;AP0E~(-/-)小鼠TLR9介导巨噬细胞极化效应对动脉粥样硬化作用的研究[D];福建医科大学;2015年
3 张译丹;盐皮质激素受体拮抗剂调控巨噬细胞表型对实验性矽肺的作用[D];河北医科大学;2015年
4 卢文冉;HCV core蛋白作用的巨噬细胞培养上清对肝细胞生物学性状的影响[D];河北医科大学;2015年
5 李文建;载脂蛋白E影响巨噬细胞因子表达及分型的机制研究[D];河北医科大学;2015年
6 曹爽;高糖对巨噬细胞TLR4信号转导的调节作用[D];河北医科大学;2015年
7 宁程程;肿瘤相关巨噬细胞在子宫内膜癌雌激素敏感性中的作用及机制研究[D];复旦大学;2014年
8 高龙;PLD4在肿瘤相关巨噬细胞抑制结肠癌增殖中的作用研究[D];成都医学院;2015年
9 任虹;感染期子宫颈癌U14细胞荷瘤小鼠抑制巨噬细胞CCL5分泌的机制研究[D];河北医科大学;2015年
10 李美玲;双酚A对小鼠腹腔巨噬细胞极化影响的体外研究[D];安徽医科大学;2015年
,本文编号:2189745
本文链接:https://www.wllwen.com/yixuelunwen/jichuyixue/2189745.html