轻型链球菌促进铜绿假单胞菌致病性及机制研究
[Abstract]:Part I Effect of Streptococcus militaris on pathogenicity of Pseudomonas aeruginosa BF Objective: Mechanical ventilation is widely used and biofilm (BF) is formed in tracheal tube (ETT). Ventilator associated pneumonia (VAP) in newborns is still a difficult clinical problem. Normal bacteria in oropharynx were the most common on the surface of ETT in neonates, and the detection rate of S. mitis was higher in VAP group. Cell viability, IL-8 expression and TLR2,4 expression were detected after BCM stimulation of human airway epithelial cells (BEAS-2B). The total viable bacteria and P. aeruginosa in mixed BF were significantly higher than those in PAO1 alone (P 0.05). However, compared with BCM in PAO1 alone, the cytotoxicity of mixed BCM and the expression of IL-8, TLR2, 4 induced by mixed BCM were significantly lower (P 0.05). It is believed that normal oropharyngeal bacteria, on the one hand, can enhance the adhesion of PAO1 and BF formation, thereby escaping the host immunity and antibiotic killing; on the other hand, S. mitis reduces the host immune response induced by PAO1. This may be the reason for the high detection rate of S. mitis on the surface of ETT BF in neonatal VAP children. The role of non-pathogenic bacteria in BF is generally believed to provide new insights into the pathogenesis of BF on the surface of neonatal VAP ETT. This view may also provide new research directions for other BF-related infections. BF also releases planktonic bacteria after maturation and affects the host. Studies have shown that some oral colonies (such as Porphyromonas dentatus, actinomycetes, etc.) can promote the adhesion of certain respiratory pathogens to host cells and tissues, thereby affecting them. Pathogenicity. So does S. mitis have any effect on planktonic P. aeruginosa? This part of the experiment is to clarify the question. Methods: Planktonic bacteria were divided into PAO1 group, S. mitis group and PAO1 + S. mitis group. Bacteria (MOI = 100) were added to human respiratory epithelial cells (BEAS-2B). Invasion and adhesion experiments were used to observe the invasion of bacteria on BEAS-2B cells. Results: Compared with PAO1 alone group, S. mitis could promote the invasion ability of PAO1 to BEAS-2B (P 0.05), but had no significant effect on the adhesion ability of PAO1 to BEAS-2B (P 0.05). There was no significant difference in cell survival rate and IL-8 level between PAO1 + S. mitis group and PAO1 alone group (P 0.05). Conclusion: S. mitis can enhance the invasiveness of PAO1 on BEAS-2B cells, but has no effect on PAO1 adhesion to BEAS-2B cells, suggesting that the mechanisms are different. The effect of sex may be mainly produced in the BF state. Part 3 Streptococcus minimus promotes the formation of biofilm by enhancing the QS system of Pseudomonas aeruginosa biofilm. The mechanism of intercommunion regulation in multispecies BF is the key to the formation of BF, and the Quorum sensing (QS) system is the key to the study of BF regulation in multispecies. The first part has proved that S. mitis can enhance the adhesion of PAO1 and the formation of BF, but the specific mechanism is unclear; and P. aeruginosa QS system is closely related to its adhesion and BF formation ability. So, is S. mitis related to P. aeruginosa QS system? Group R, P.a_Las R_rhl R, S.mitis, PAO1+S.mitis, P.a_las R+S.mitis, P.a_Las R RHL R+S.mitis, P.a_Las R RHL R+S.mitis, crystal violet, plate counting and optical microscopy were used to observe bacterial adhesion, crystal violet, plate counting and laser confocal microscopy (CLSM) were used to observe the formation of BF. Results: The adhesion of PAO1+S.mitis, P.a91las R+S.mitis, P.a91las R+S.mitis, P.a91LasR91rhl R+S.mitis, P.a91R+S.mitis three groups were significantly stronger than PAO1 alone, P.a91lasR and P.a91lasR and P.a91LasR91rhl R group (P 0.05); and the plate count results showed that PAO1+S.mitis, P.a91las R+S.mitis, P.a91las R+S.las, P.a91las R+S.las, P.a91R+S.las, P.a91las, P.A91The adhesion of P. aeruginosa in RHL R + S. mitis mixed group was higher than that in RHL R + S. mitis mixed group. BF biomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomaDifference (P 0.05). S. mitis could up-regulate the QS gene of PAO1 strain The expression of QS gene (including Las I, Las R, RHL I, RHL R, RHL I, RHL R) was significantly higher than that of PAO1 group (P 0.05), but there was no significant difference between P.a91las R+S.mitis group and P.a91las R+S.mitis group and P.a91las R91rhl R+S.mitis group (including Las I, Las R, RHL I, RHL R, RHL I, RHL R) and P.a91las91las91las91las R and P.a91Rmitmitmitmitmitaerl group (P 0.05). Conclusion: for P.a91las91las91las91rasrasrasrasrasrasrasadhesion force S. mitis promotes BF formation by up-regulating the P. aeruginosa QS gene. Whether this mechanism is directly mediated by S. mitis or whether certain substances (such as AI-2) secreted by S. mitis play a role in the formation of P. aeruginosa BF remains to be demonstrated by future experiments.
【学位授予单位】:重庆医科大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R378.991
【相似文献】
相关期刊论文 前10条
1 林晓 ,陈美云 ,林其昌 ,陈公平;222株铜绿假单胞菌药敏结果[J];现代医药卫生;2002年10期
2 王炳华;王炳云;;106株铜绿假单胞菌药敏结果分析[J];基层医学论坛;2004年06期
3 黄志强;李丽君;卢娟;;肺结核病合并感染铜绿假单胞菌的药敏分析[J];临床肺科杂志;2010年09期
4 封尊玉;;铜绿假单胞菌的治疗策略[J];海南医学;2010年21期
5 刘萍;张志伦;倪丹妮;吴杰红;;铜绿假单胞菌产金属β-内酰胺酶因素分析[J];中华医院感染学杂志;2011年23期
6 吴丽娟,熊尔阳,邓光贵;聚合酶链反应检测铜绿假单胞菌的研究现状[J];国外医学.临床生物化学与检验学分册;1996年06期
7 周铁丽,曹建明;一种鉴定铜绿假单胞菌的新方法[J];陕西医学检验;1997年04期
8 朱小平;78株铜绿假单胞菌药敏结果的初步探讨[J];江苏临床医学杂志;1999年05期
9 孙东华,边瑞岩,孙跃军,王庆敏;铜绿假单胞菌污染矿泉水调查分析[J];环境与健康杂志;2000年04期
10 张文英;86株铜绿假单胞菌的耐药调查[J];华夏医学;2000年04期
相关会议论文 前10条
1 方莉;许媛;黄义山;蔡燕;唐中;杨明辉;廖涛;;铜绿假单胞菌金属β-内酰胺酶基因的检测[A];中华医学会第九次全国检验医学学术会议暨中国医院协会临床检验管理专业委员会第六届全国临床检验实验室管理学术会议论文汇编[C];2011年
2 周明明;周铁丽;李超;吴庆;陈栎江;吴莲凤;彭定辉;;主动外排在铜绿假单胞菌耐药中的作用研究[A];2009年浙江省检验医学学术年会论文汇编[C];2009年
3 陈邦;王琰;苟晓峰;陈林;;嘧霉胺对铜绿假单胞菌基因的调节[A];第六届全国化学生物学学术会议论文摘要集[C];2009年
4 朱丹;李欣;;对亚胺培南耐药的铜绿假单胞菌的体外药敏分析[A];2005年浙江省呼吸系病学术年会论文汇编[C];2005年
5 洪波;贡联兵;;铜绿假单胞菌对亚胺培南的药敏分析[A];第五次全国中青年检验医学学术会议论文汇编[C];2006年
6 徐海茹;田彬;岳娜;胡志东;;临床分离的铜绿假单胞菌耐药结果分析[A];第五次全国中青年检验医学学术会议论文汇编[C];2006年
7 赵书平;姜梅杰;;神经内科重症监护室铜绿假单胞菌氨基糖苷类修饰酶基因研究[A];中华医学会第七次全国检验医学学术会议资料汇编[C];2008年
8 张杜超;方向群;;微重力对铜绿假单胞菌毒力影响及与肺部感染关系[A];2011年空间生命与生命起源暨航天医学工程学术研讨会论文集[C];2011年
9 李春梅;钟晓祝;;铜绿假单胞菌医院感染监测分析[A];中华预防医学会消毒分会学术年会论文汇编[C];2010年
10 熊娟;梁丽红;;尿液中分离出产红脓素的铜绿假单胞菌[A];2012全国临床微生物与感染免疫学术研讨会论文集[C];2012年
相关重要报纸文章 前5条
1 浙江大学医学院附属第一医院 俞云松;铜绿假单胞菌耐药全国流行[N];健康报;2008年
2 李曙平;铜绿假单胞菌 老年病房的主要致病菌[N];中国中医药报;2003年
3 王振岭;铜绿假单胞菌耐药问题严重[N];中国医药报;2002年
4 天津医科大学总医院检验科 胡志东;关注铜绿假单胞菌对碳青霉烯类药物的耐药[N];健康报;2009年
5 ;碳青霉烯类抗生素[N];农村医药报(汉);2007年
相关博士学位论文 前10条
1 张瑞琴;氟喹诺酮类药物诱导铜绿假单胞菌耐药性及分子机制的研究[D];山西医科大学;2015年
2 曹振辉;铜绿假单胞菌裂解性噬菌体的筛选、鉴定及应用[D];大连理工大学;2015年
3 苏甜甜;铜绿假单胞菌鞭毛及生物膜调控蛋白FleQ和糖苷水解酶PslG的结构与功能研究[D];山东大学;2015年
4 张明亮;铜绿假单胞菌F_(190-342)-I_(21-83)基因重组鼠伤寒沙门菌的构建及实验免疫研究[D];吉林大学;2015年
5 蔡双启;铜绿假单胞菌对头孢哌酮钠/舒巴坦钠的耐药变迁及差异蛋白组学和比较基因组学研究[D];广西医科大学;2016年
6 倪磊;铜绿假单胞菌蹭行运动和表面感知机制的研究[D];中国科学技术大学;2016年
7 张秋勤;生鲜鸡肉中腐败菌群体感应信号分子研究[D];南京农业大学;2014年
8 宋思捷;轻型链球菌促进铜绿假单胞菌致病性及机制研究[D];重庆医科大学;2016年
9 张若文;烧伤病房耐碳青霉烯类铜绿假单胞菌耐药机制及分子流行病学研究[D];吉林大学;2012年
10 张亚妮;谷胱甘肽与铜绿假单胞菌致病性及抗生素抗性的关系研究[D];西北大学;2009年
相关硕士学位论文 前10条
1 贾子中;黄连素对烧伤创面铜绿假单胞菌生物膜干预试验及自制中药临床应用观察[D];内蒙古大学;2015年
2 王颖;新型抗耐药革兰氏阴性菌药物的筛选研究[D];北京协和医学院;2015年
3 马超;无机镓化合物抗菌性能研究[D];西南交通大学;2015年
4 蒲攀;林麝源铜绿假单胞菌的分离鉴定及毒力研究[D];四川农业大学;2014年
5 任佳会;间接ELISA检测林麝源铜绿假单胞菌抗体方法的建立及应用评估[D];四川农业大学;2015年
6 白文丽;林麝养殖场铜绿假单胞菌的分布调查及抗菌消毒药物的筛选[D];四川农业大学;2015年
7 董满园;铜绿假单胞菌群体感应抑制剂的分离与活性评价[D];中国海洋大学;2015年
8 郑红达;假单胞菌喹诺酮信号系统抑制剂的筛选与研究[D];中国海洋大学;2013年
9 李鸿飞;黏液型铜绿假单胞菌耐药特征和耐药株相关基因型分析[D];吉林大学;2016年
10 王康;铜绿假单胞菌调节蛋白VqsR、Arr及T3SS系统转运蛋白PopB/D的结构与功能研究[D];山东大学;2016年
,本文编号:2204841
本文链接:https://www.wllwen.com/yixuelunwen/jichuyixue/2204841.html