当前位置:主页 > 医学论文 > 精神病论文 >

基于Keyes双因素模型的浙江省人群心理健康状况调查

发布时间:2018-05-17 10:41

  本文选题:积极心理学 + 双因素模型 ; 参考:《安徽医科大学》2017年硕士论文


【摘要】:目的:尽管世界各国对心理健康的关注和投入持续增加,心理疾病的发展并没有得到控制,而是呈现日益增长的态势。传统心理健康模型并不能解决这个问题,因此,我们需要探索更有效的心理健康模型。本研究的目的是:验证心理健康双因素模型在正常人、精神疾病和躯体疾病患者中的适用性;以心理健康双因素模型为理论基础,了解浙江省人群的心理健康状况。方法:依据Keyes心理健康双因素理论,采用问卷法分别对1900名浙江省人群和400名患有精神或躯体疾病的人群,进行消极、积极两个层面的心理健康调查。本论文包括三个研究。研究一和研究二的研究方法相同,建立两类检验模型进行验证性因素分析:1.单因素模型,构建一个代表个体心理健康的潜变量;2.双因素模型,构建两个潜变量,正性健康和负性健康。正性健康的观察变量为主观幸福感的14道题目,负性健康的观察变量为GAD-7的总分,PHQ-9的总分和GHQ-12的总分。研究三的研究方法:运用精选出来的量表,作为正性健康和负性健康(精神病理学标准)的指标,调查浙江省正常人群的心理健康状况,进行心理健康的双因素分析。结果:通过对不同模型比较,心理健康双因素模型在正常人和疾病人群中的拟合指数更为理想(CMIN/DF=3.63,RMR=0.04,RMSEA=0.095;CMIN/DF=5.10,RMR=0.07 RMSEA=0.101);根据心理健康双因素模型四分法对浙江省人群人群进行划分,其分布结果与国外研究基本一致,而六分法结果和Keyes的研究差异显著。本研究完全病态比例都高于Keyes的研究结果(高4.7%),完全心理健康的比例低于Keyes的研究结果(低3.6%);浙江省正常人群中,完全心理健康者占69.8%,完全病态9.4%,易感者7.3%,有症状但自我满足者13.5%;浙江省正常人群中,男性与女性心理健康状态分布不存在显著差异(χ~2=4.783,P0.05);不同年龄阶段的心理健康状态分布存在显著差异(χ~2=222.43,P0.001),总体来看,45岁以下完全心理健康者的比例均低于45岁以上人群,同时45岁以下完全病态者的比例均高于45岁以上人群;不同婚姻状态的心理健康状态分布存在显著差异(χ~2=549.69,P0.001),总体来看,从症状上来看,未婚者总体有心理症状的比例更高(6%),从未来心理健康状态的发展来看,未婚者的心理健康状态可能会变好,因为未婚者中的高幸福感和中等幸福感者的比例总和要高于已婚者(高5.3%)。结论:心理健康双因素模型适用于浙江省正常人群和疾病人群;可以用WEMWBS、PHQ-9、GAD-7和GHQ-12组合来评估心理健康;本研究采用的评估方法更具有操作性,在评估后,还可以筛选出抑郁和焦虑的高危人群,为疾病的预防、早期发现提供了极大的方便。
[Abstract]:Objective: despite the increasing attention and investment in mental health in the world, the development of mental illness has not been controlled, but has shown a growing trend. Traditional mental health model can not solve this problem, therefore, we need to explore a more effective mental health model. The purpose of this study was to verify the applicability of the mental health two-factor model in normal people, mental illness and somatic disease patients, and to understand the mental health status of the population in Zhejiang Province based on the mental health double-factor model. Methods: according to Keyes's double factor theory of mental health, 1900 people in Zhejiang province and 400 people with mental or physical diseases were investigated by questionnaire. This thesis includes three studies. Study 1 and study 2 have the same research method, and establish two kinds of test models to analyze the confirmatory factors: 1. 1. The single factor model is used to construct a latent variable representing individual mental health. Two-factor model was used to construct two latent variables, positive health and negative health. The observation variables of positive health were 14 subjects of subjective well-being, and the observation variables of negative health were the total score of GAD-7, the total score of PHQ-9 and the total score of GHQ-12. The research methods of the third study were as follows: the selected scale was used as the index of positive and negative health (the standard of psychopathology) to investigate the mental health status of the normal population in Zhejiang province and to carry out the double factor analysis of mental health. Results: compared with different models, the fitting index of mental health two-factor model in normal and diseased population was better than that of CMINP / DF3.63RMRM 0.04 / RMSEAA 0.095 / RMSEA0.07 RMSEAA 0.07RMSEAA 0.1010.The population in Zhejiang Province was divided according to the four-part method of mental health double factor model. The results of distribution are consistent with those of foreign studies, but the difference between the results of sextant method and Keyes is significant. In this study, the rate of complete morbid was higher than that of Keyes (4.7m), and the rate of complete mental health was lower than that of Keyes (3.6%). Complete mental health accounted for 69.8%, complete pathological 9.4m, susceptible 7.3cm, symptomatic but self-satisfied 13.5%; Zhejiang normal population, There was no significant difference in the distribution of mental health status between male and female (蠂 ~ (2 / 2) 4.783) (P 0.05), but there was significant difference in the distribution of mental health state between different age groups (蠂 ~ (22) 222.43) P 0.001 (蠂 ~ (2 +). In general, the proportion of persons under 45 years of age with complete mental health was lower than that of those over 45 years old. At the same time, the proportion of patients under 45 years old was higher than that of people over 45 years old, and there were significant differences in the distribution of mental health status among different marital states (蠂 2, 549.69, P 0.001). Generally speaking, from the point of view of symptoms, there were significant differences in the distribution of mental health status. The overall proportion of unmarried people with psychological symptoms is even higher. Judging from the development of mental health in the future, the mental health status of unmarried people may become better. Because the proportion of unmarried people with high and moderate happiness was higher than that of married people (5.3%). Conclusion: the dual-factor model of mental health is suitable for the healthy and sick population in Zhejiang Province, and the combination of WEMWBSX PHQ-9 GAD-7 and GHQ-12 can be used to evaluate mental health. High-risk populations for depression and anxiety can also be screened, providing great convenience for disease prevention and early detection.
【学位授予单位】:安徽医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R749

【参考文献】

相关期刊论文 前10条

1 陈素心;周敏;陈瑞烈;;艾滋病病人社会支持与生活质量及幸福感的关系[J];全科护理;2016年01期

2 谢国琴;黄华;;重庆市永川区居民幸福感调查分析[J];才智;2015年21期

3 盖万良;邵长春;石念利;;幸福感提升训练对精神分裂症患者认知功能和社会功能的影响[J];中国医学创新;2015年05期

4 杨丽芹;盖万良;王玉伟;;幸福感提升训练合并安非他酮对抑郁症患者疗效及生活质量的影响[J];中国民康医学;2014年13期

5 董文婷;熊俊梅;王艳红;;心理健康双因素模型的中国高中生实证调查[J];中国临床心理学杂志;2014年01期

6 胡强;万玉美;苏亮;李惠;金一;李婷;王继军;李春波;张明园;;中国普通人群焦虑障碍患病率的荟萃分析[J];中华精神科杂志;2013年04期

7 才果;;青海藏族大学新生心理健康状况比较研究[J];民族教育研究;2013年03期

8 王阳;李箕君;王纯;张宁;张婕;张亚林;;抑郁症、焦虑症、强迫症患者主观幸福感比较[J];临床精神医学杂志;2013年01期

9 段泉泉;胜利;;焦虑及抑郁自评量表的临床效度[J];中国心理卫生杂志;2012年09期

10 王阳;王纯;关承斌;周青静;李箕君;张宁;;抑郁症患者自尊、主观幸福感及其症状学影响因素分析[J];中国健康心理学杂志;2012年05期



本文编号:1901060

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/jsb/1901060.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户295d3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com