严重意识障碍患者对声刺激的EEG响应及其在有效性评估中的应用
本文选题:严重意识障碍 + EEG ; 参考:《杭州电子科技大学》2013年硕士论文
【摘要】:严重意识障碍患者是指由重型颅脑损伤、脑出血或梗死、电击伤、心脏疾病、溺水等所导致的对周围环境的感知具有障碍的患者(俗称植物人)。严重意识障碍患者意识状态分为植物状态(VS, vegetative state)和最小意识状态(MCS, minimally conscious state)。如何通过不同的刺激手段(如电刺激,声刺激,光刺激等)对意识障碍患者进行有效促醒是医学界面临的难题之一。声刺激(包括唤名刺激、音乐刺激)是目前临床常用的促醒治疗方法,然而如何对不同声刺激的有效性如何进行评估,目前还缺乏明确的评估方法,因此探索声刺激有效性评估方法具有重要的临床应用价值。 脑电信号(EEG)具有时间分辨率高,成本低,无辐射性,,适合床边检测等优点,能够准确、客观的地反映出大脑功能活动的变化情况。本文以脑电技术作为研究手段,通过对比分析被试在不同类型声音(唤名、音乐)刺激下的EEG信号特征值的变化,判别何种刺激引发对患者最大脑电响应,以此作为刺激有效性评定依据;同时,根据不同意识状态的患者对同一声音刺激的不同反应程度,实现意识状态的辅助判定。本论文的主要研究工作如下: (1)背景及现状的介绍:介绍在严重意识障碍患者诊治领域面临的医学问题及脑电技术在意识状态判定和预后方面的研究概况和发展趋势。 (2)实验方案设计:包括实验对象的选择、实验范式的确定、实验材料的应用等。 (3)声刺激有效性的评估:本文分别选择了小波能量值和样本熵作为脑电特征指标,统计分析MCS和VS在唤自名刺激、唤他名刺激和音乐刺激下三种不同声音刺激前后的脑电响应程度,比较不同声刺激手段的有效性。研究表明:首先,在唤自名刺激前后,MCS和VS的脑电小波能量值均具有显著性的变化,而样本熵均无显著性的变化。其次,在唤他名刺激前后,MCS和VS的小波能量值、样本熵均无显著性变化。最后,在音乐刺激前后,MCS的小波能量值有显著性变化,样本熵无显著性变化;而VS的小波能量值、样本熵均无显著性变化。因此,脑电小波能量值能够有效地实现对不同声刺激的有效性评估,而样本熵不适于评估声刺激的有效性。 (4)意识状态的分类研究:本文以唤自名刺激和音乐刺激下的8导小波能量值为特征参数,应用K-调和均值聚类方法,对33例意识障碍患者进行了意识状态判别,其判别正确率达78%。
[Abstract]:Severe consciousness disorder refers to the patients with severe brain injury, cerebral hemorrhage or infarction, electric shock injury, heart disease, drowning and so on, who have difficulty in perceiving the surrounding environment (commonly known as vegetative). The state of consciousness of patients with severe disturbance of consciousness is divided into vegetative state (VS, vegetative state) and minimal state of consciousness (MCS, minimally conscious state). How to effectively awaken the patients with consciousness disorders through different stimuli (such as electrical stimulation, acoustic stimulation, optical stimulation, etc.) is one of the difficult problems in the medical field. Acoustic stimulation (including name-calling stimulation, musical stimulation) is a commonly used method of wake-up therapy. However, how to evaluate the effectiveness of different acoustic stimuli, there is still a lack of clear evaluation methods. Therefore, it has important clinical application value to explore the evaluation method of acoustic stimulation effectiveness. EEG has the advantages of high time resolution, low cost, no radiation, suitable for bedside detection, and can accurately and objectively reflect the changes of brain function. In this paper, EEG technique was used as a research tool. By comparing and analyzing the changes of EEG signal characteristic values under different types of sound (name, music) stimulation, we determined which stimulation triggered the greatest EEG response to the patient. At the same time, according to the different degree of response to the same sound stimulation, the auxiliary judgment of the state of consciousness can be realized according to the different degree of response of patients with different states of consciousness to the same sound stimulation. The main work of this thesis is as follows: (1) the background and present situation: the medical problems in the field of diagnosis and treatment of patients with severe consciousness disorder and EEG technology in the judgment and prognosis of consciousness state are introduced. Research overview and development trend. (2) Experimental scheme design: including the selection of experimental subjects, (3) Evaluation of the validity of acoustic stimulation: wavelet energy value and sample entropy were selected as EEG characteristic indexes, respectively, and MCS and vs were used as self-named stimuli. The EEG responses before and after three different sound stimuli were compared to compare the effectiveness of different acoustic stimuli. The results show that: firstly, the wavelet energy values of MCS and vs have significant changes before and after self-naming stimulation, but the sample entropy has no significant change. Secondly, the wavelet energy and entropy of MCS and vs were not significantly changed before and after the stimulation. Finally, before and after the music stimulation, the wavelet energy value of MCS has significant change, but the sample entropy has no significant change, while the wavelet energy value of vs and the sample entropy have no significant change. Therefore, EEG wavelet energy can effectively evaluate the effectiveness of different acoustic stimuli. But sample entropy is not suitable for evaluating the validity of sound stimulation. (4) the classification of conscious state: based on the energy value of 8-conductance wavelet under self-naming stimulus and music stimulus, the K-harmonic mean clustering method is used in this paper. A total of 33 patients with consciousness disorder were judged by the state of consciousness, and the correct rate of judgment was 78g.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:R749.1;TN911.7
【参考文献】
相关期刊论文 前10条
1 谭旭平;刘建成;;脑电处理的Wigner分布交叉项的模糊滤波[J];北京生物医学工程;2008年05期
2 王兆源,周龙旗;脑电信号的分析方法[J];第一军医大学学报;2000年02期
3 黄建;王新;;小波阈值去噪的改进方法[J];电子质量;2007年09期
4 张崇;郑崇勋;于晓琳;李小平;沈开泉;;基于脑电近似熵的脑机能疲劳状态分析[J];航天医学与医学工程;2006年06期
5 韩清鹏;王平;王黎;闻邦椿;;疲劳状态下EEG信号α波的最大李雅普诺夫指数估算[J];江南大学学报;2006年05期
6 王宁红;;神经外科持续植物生存状态病人的护理[J];全科护理;2010年29期
7 刘正平;冯召勇;杨卫平;;基于小波去噪的微弱信号提取[J];制造业自动化;2010年08期
8 李小兵;初孟;邱天爽;鲍海平;;一种基于经验模态分解的时频分布及其在EEG分析中的应用[J];生物医学工程学杂志;2007年05期
9 孟欣,沈恩华,陈芳,顾凡及;脑电图复杂度分析中的粗粒化问题 I.过分粗粒化和三种复杂度的比较[J];生物物理学报;2000年04期
10 杨春梅,万柏坤,綦宏志,高扬;老年性痴呆症患者的EEG近似熵特征初探[J];天津大学学报;2002年04期
相关硕士学位论文 前2条
1 周建芳;脑电信号的特征分析与研究[D];广西师范大学;2008年
2 楼恩平;抑郁症脑电信号特征提取及分类研究[D];浙江师范大学;2009年
本文编号:2072251
本文链接:https://www.wllwen.com/yixuelunwen/jsb/2072251.html