新型毒蕈碱型M1受体激动剂的发现及其在Alzheimer症动物模型中的评价
[Abstract]:With the increasing aging of the population, the prevalence and incidence of some neurodegenerative diseases related to brain aging, such as Alzheimer's Disease (AD), have become one of the main diseases threatening human health, and have brought heavy burden to society, economy and family. It has been more than a century since the discovery of dementia. The cause of AD is still unknown, and there are no effective drugs to treat it.
Currently, FDA-approved drugs for AD are mainly cholinesterase inhibitors (AChE I) based on the cholinergic hypothesis. These drugs increase ACh levels in the brain by inhibiting the degradation of acetylcholine (ACh), thus alleviating AD symptoms. On the other hand, the density of muscarinic M1 acetylcholine receptor (M1mAChR) in the brain of AD patients has not decreased. And a large number of studies have shown that M1 receives. M1 receptor agonists can effectively ameliorate many typical symptoms of AD, including the production and deposition of neurotoxic protein A beta and the hyperphosphorylation of tau protein due to the wrong shearing of Ap precursor protein (APP) in the brain. Some M1 receptor agonists have been introduced into clinical trials, such as Xanomeline, which has been shown to improve cognitive and behavioral abnormalities in AD patients, but has been eliminated in phase III clinical trials due to its large side effects.
In order to improve Xanomeline and obtain a novel M1 receptor agonist with better activity and less side effects, we have obtained a series of Xanomeline derivatives through systematic modification and modification of the parent nucleus of Xanomeline in collaboration with Professor Lei Xiaoping of Peking University. In the first chapter, we describe the screening of Xanomeline derivatives and the discovery of EUK1001, and preliminarily analyze the effect of EUK1001 on the shearing of APP. In the second chapter, we evaluate the effect of EUK1001 on the forebrain specific presenilin double knockout (PS cDKO) in AD animal model in vivo. In the third chapter, the possible role of Klotho in the neurodegenerative symptoms of PS cDKO mice was discussed. In the fourth chapter, the research progress of M1 receptor agonists and Klotho was reviewed.
1, the screening of a new M1 receptor activator (-Xanomeline) new derivative EUK1001.
Using a cell screening model based on reporter gene technology, 172 derivatives of Xanomeline were screened and 18 active compounds were found, including the two most active compounds EUK1001 and EUK1002. Compared with Xanomeline, EUK1001 had smaller EC50 and higher maximum activation multiple for M1 receptor. The activities of EUK1001 and EUK1002 were transient. At the same time, we cloned and expressed a Swedish mutant of human APP gene (APPsw) in mouse neuroblastoma cell Neuro2A (N2a), which was used as AD cell model and found that EUK1001 and EUK1002 could be stimulated by stimulation. From these screening results and in vitro experimental data, we can see that EUK1001 and EUK1002 can not only activate M1 receptor more effectively than Xanomeline, but also promote alpha-shearing of APP, which may have some potential in regulating the pathological pathway of AP in AD.
2. EUK1001 improves some neurodegenerative symptoms in forebrain-specific presenilin double knockout (PS cDKO) AD mice
Subsequent animal pharmacological and toxicological experiments showed that the number of side effects induced by EUK1001 was significantly less than that induced by Xanomeline, while EUK1002 was not improved. The effects of EUK1001 on neurodegenerative symptoms in PS cDKO mice were analyzed. The results showed that EUK1001 significantly improved the impaired recognition and memory abilities in PS cDKO mice after 3 months of chronic administration (0.5mg/kg/day). The results of brain slices analysis showed that EUK1001 could effectively alleviate the impaired recognition and memory abilities in PS cDKO mice. The results showed that both EUK. 1001 and Xanomeline could effectively reduce tau protein hyperphosphorylation in the brain of PS cDKO mice, but both of them had increased inflammatory responses to PS cDKO mice. These results show that EUK1001 can obviously improve some neurodegenerative symptoms of PS cDKO mice, and the effect is better than that of Xanomeline at the same dose, which has potential for further development.
3, the decrease of Klotho expression and the increase of blood phosphorus in the forebrain specific PS cDKO mice.
Klotho protein is an important anti-aging factor, which is highly expressed only in the kidney and brain, but plays a variety of functions in the form of circulating factors in many parts of the body, such as regulating calcium and phosphorus balance, antioxidant stress, anti-inflammation and so on. In this experiment, we analyzed the expression of Klotho and some indexes related to the function of klotho, such as blood phosphorus, blood calcium and kidney function, in AD animal model PS cDKO mice, and combined with some previous results in this model, we preliminarily discussed the possible occurrence of Klotho in neurodegenerative symptoms of PS cDKO mice. The results showed that the expression of Klotho in kidney of 12-month-old PS cDKO mice was significantly lower than that of normal control mice, the level of serum phosphorus was significantly higher, and the level of serum calcium was slightly lower than that of normal control mice, but no obvious renal dysfunction was observed. These results preliminarily suggest that Klotho may be associated with the symptoms of PS cDKO mice. The decrease in Klotho expression may lead to an increase in serum phosphorus concentration but is not sufficient to induce renal dysfunction. Oxidative stress is associated with increased inflammatory response in mice, but further experimental confirmation is needed.
【学位授予单位】:华东师范大学
【学位级别】:博士
【学位授予年份】:2012
【分类号】:R749.16;R-332
【相似文献】
相关期刊论文 前10条
1 张幼怡,董尔丹,陈明哲,韩启德;大鼠α_1肾上腺素受体及其亚型影响β肾上腺素受体介导心肌正性变力效应的途径[J];中国药理学与毒理学杂志;1995年04期
2 朱渭民;二氢埃托菲片镇痛效果观察[J];滨州医学院学报;1995年02期
3 郑志兵,焦克芳,李松;Kappa阿片受体激动剂研究进展[J];中国药物化学杂志;1995年04期
4 王国华 ,朱瑞龙;外周K受体激动剂费朵托嗪和安慰剂治疗肠易激综合征的多中心剂量-效应研究[J];国外医学.消化系疾病分册;1996年02期
5 张齐武;长期吸入β_2受体激动剂的潜在危险[J];国外医学.呼吸系统分册;1997年02期
6 长坂行雄;哮喘急性发作期的治疗[J];日本医学介绍;1998年12期
7 沈敬山,刘东祥,蒋华良,嵇汝运;非肽类阿片Kappa受体激动剂的研究现状[J];药学进展;1998年04期
8 朱承煦;β_2受体激动剂加类固醇激素与加黄嘌呤类药物治疗哮喘的疗效比较[J];南京医科大学学报;1999年02期
9 ;佐米曲坦[J];中国医药技术与市场;2001年04期
10 蒋捍东;抗哮喘药物的合理应用[J];中国临床医生;2002年02期
相关会议论文 前10条
1 黄莉莉;张慧;邵启祥;;Salbutamol对树突状细胞功能影响的初步研究[A];中国免疫学会第五届全国代表大会暨学术会议论文摘要[C];2006年
2 刘维佳;张湘燕;;长效β_2受体激动剂/吸入糖皮质激素联合制剂在COPD中的应用[A];二○○八年贵州省医学会呼吸病学分会学术大会暨国家级继续教育项目《睡眠呼吸疾病诊治进展学习班》论文汇编[C];2008年
3 王玉湘;方伟岗;;P2Y嘌呤受体活化的PI-3K信号通路在前列腺癌细胞生物学行为中的作用[A];第四届中国肿瘤学术大会暨第五届海峡两岸肿瘤学术会议论文集[C];2006年
4 向飞;张琼;褚志刚;黄跃生;;蛋白激酶C在腺苷A1受体调控缺氧心肌细胞线粒体通透性转换孔开放中的表达和作用[A];第八届全国烧伤外科学年会论文汇编[C];2007年
5 饶木荣;;葶苈子、椒目在哮喘病中的应用(附17例临床观察)[A];中国中医药学会基层中医药会议专刊[C];1997年
6 牛新武;冯捷;彭振辉;马惠群;袁景奕;;维A酸抑制恶性黑色素瘤细胞增殖受体机制研究[A];2006中国中西医结合皮肤性病学术会议论文汇编[C];2006年
7 徐永明;杜冬萍;江伟;;围术期α_2肾上腺素受体激动剂应用进展[A];2006年中华医学会全国麻醉学术年会知识更新讲座[C];2006年
8 CHAN Jimmy;方晏燕;李平;;液相色谱-串联四极杆质谱法对动物源基质中β_2-受体激动剂的检测[A];2008年全国有机质谱学术会议论文集[C];2008年
9 陈晟;张晓洁;乐卫东;;新型D2/D3受体激动剂Ropinirole对抗蛋白酶体抑制剂介导的多巴胺能神经元凋亡的机制研究[A];中华医学会第十三次全国神经病学学术会议论文汇编[C];2010年
10 潘昊;Partha Mukhopadhyay;Pal Pacher;;CB2受体激动剂HU308对顺铂小鼠肾脏毒性的保护作用[A];2008年浙江省泌尿外科学术年会论文汇编[C];2008年
相关重要报纸文章 前10条
1 本报特约撰稿人 董欢霁;“完全控制”哮喘不是梦[N];医药经济报;2006年
2 市第一人民医院呼吸科 陶玉坚;支气管哮喘的治疗目标与常用的治疗药物(2)[N];扬州日报;2006年
3 张永丽;哮喘治疗的误区[N];农村医药报(汉);2007年
4 魏开敏;护卫哮喘患儿的『圣斗士』[N];医药经济报;2006年
5 赵春平;秋季谨防哮喘发作[N];医药养生保健报;2007年
6 ;哮喘运动员更有希望“拿牌”?[N];健康报;2008年
7 本版编辑邋于乃森 北京大学第一医院呼吸科主任医师 迟春花;哮喘药疗效与患者基因型无关[N];健康报;2008年
8 王乐民;长效β2激动剂增加哮喘病人死亡风险[N];健康报;2006年
9 王乐民;长效β2激动剂哮喘增加哮喘病人死亡风险[N];大众卫生报;2006年
10 戴丹 谢颖;支气管哮喘的药物治疗[N];中国医药报;2008年
相关博士学位论文 前10条
1 王栋;新型毒蕈碱型M1受体激动剂的发现及其在Alzheimer症动物模型中的评价[D];华东师范大学;2012年
2 杜芳;新型多巴胺D3受体激动剂对多巴胺神经元的神经营养作用的研究[D];第四军医大学;2004年
3 曹济民;血管活动个性化的研究[D];中国协和医科大学;1995年
4 常非;前列腺素E受体第四亚型激动剂在骨延长治疗中促进成骨作用的研究[D];吉林大学;2006年
5 方泉;神经肽FF的C末端四肽构效关系研究及其药理学活性的检定[D];兰州大学;2007年
6 张岩;一、新型高选择性5-HT_1受体激动剂Sumatriptan全合成新路线的研究 二、吡咯合成新方法研究[D];中国协和医科大学;1997年
7 冯君;新型过氧化物酶体增殖因子活化受体激动剂的设计、合成和构效关系的研究[D];中国协和医科大学;2004年
8 陆颖;新型过氧化物酶体增殖因子活化受体激动剂的设计、合成和构效关系的研究[D];中国协和医科大学;2005年
9 郭庆民;Ca~(2+)/钙调蛋白依赖的蛋白激酶Ⅱ信息通路在阿片依赖的受体信号转导机制中的作用[D];中国协和医科大学;2001年
10 姚香兰;缺氧性肺动脉高压发病机理的细胞、分子机制探讨[D];中国协和医科大学;1994年
相关硕士学位论文 前10条
1 李静;新型5-HT_(1A)受体激动剂(±)Flesinoxan的合成工艺研究[D];沈阳药科大学;2003年
2 孙颖;5-羟色胺1A受体激动剂高通量筛选模型的建立以及FABP_4蛋白的结晶[D];扬州大学;2012年
3 赵燕燕;Sigma-1受体激动剂PRE-084对大鼠突触前钙离子浓度的作用和机制[D];复旦大学;2009年
4 张冬泉;大鼠内毒素急性肺损伤早期MMPs及上皮生长因子动态变化及β2受体激动剂的防治作用[D];兰州大学;2011年
5 陈英吉;硫酸特布他林联合布地奈德治疗支气管哮喘的临床分析[D];吉林大学;2008年
6 张超男;原发性肺非霍奇金淋巴瘤6例临床分析[D];浙江大学;2009年
7 雷琴;新型PPARγ受体激动剂的设计和合成[D];四川大学;2003年
8 郑文果;尖吻蝮蛇蛇毒中非成瘾性止痛剂的研究[D];吉林大学;2004年
9 曲楠;腺苷A2A受体激动剂经P38MAPK途径对冠状动脉微栓塞致心肌损伤的保护作用[D];广西医科大学;2009年
10 曾小莉;阿片δ受体激动剂对急性出血性休克大鼠心肌保护的研究[D];第四军医大学;2009年
,本文编号:2217536
本文链接:https://www.wllwen.com/yixuelunwen/jsb/2217536.html