淫羊藿苷对实验性自身免疫性脑脊髓炎(EAE)小鼠星形胶质细胞及轴突的影响
本文选题:实验性自身免疫性脑脊髓炎 + 淫羊藿苷 ; 参考:《广东药科大学》2016年硕士论文
【摘要】:【目的】中枢神经系统白质脱髓鞘病变是多发性硬化(multiple sclerosis,MS)的主要病理特点,近年有关MS的星形胶质细胞异常及轴突损害才逐步受到重视。我们的前期研究证实淫羊藿苷(ICA)可通过影响炎性细胞因子、HPA轴途径调节炎性免疫机制而发挥对实验性自身免疫性脑脊髓炎(EAE)小鼠症状缓解及髓鞘保护作用。本研究拟在前期研究的基础上,继续采用以复发缓解型为特征的雌性C57BL/6 EAE小鼠模型为研究对象,通过观察治疗前后各组间小鼠体重、神经功能评分变化以及脑胼胝体切片GFAP(单标)、NF200+β-APP(双标)免疫荧光染色变化,探讨EAE小鼠脑星形胶质细胞异常和轴突损害,并研究ICA对其影响,揭示ICA对EAE是否具有非炎性神经保护作用。【方法】第一部分选取SPF级65只7-9周龄C57BL/6雌性小鼠,15只作为正常对照组,50只用于造模。将小鼠麻醉后将油包水状态的MOG35-55抗原乳剂按每只小鼠300ug的剂量皮下注射接种于小鼠脊柱两侧皮下(分四个部位注射),在接种后当天及48小时后腹腔注射500ng百日咳毒素,初次免疫后第7天再次加强免疫1次。免疫后动态观察小鼠是否出现神经功能症状并对其神经功能损害进行评分。在小鼠疾病高峰期随机抽取3只EAE小鼠及3只正常小鼠处死,取脊髓腰膨大用于HE染色,光镜下观察脊髓组织学变化,确定造模是否成功。第二部分将造模成功后的EAE小鼠按评分相当的原则随机分配到3组内,分别为雌激素组(阳性对照组)、ICA组、模型对照组,加上正常对照组(空白对照组),共4组,分别给予己烯雌酚0.2mg/kg.d、ICA300mg/kg.d、等容量0.5%羧甲基纤维素钠、等容量0.5%羧甲基纤维素钠灌胃,连续给药5天,给药后第6天取材,以多聚甲醛心脏灌注取脑组织,经后固定,蔗糖脱水后进行冰冻切片分别进行荧光染色:(1)GFAP(星形胶质细胞标志)荧光单标染色:根据免疫荧光染色步骤分别加入一抗GFAP,带红色荧光的二抗Cy3并封片,在荧光显微镜下,GFAP发红色荧光;(2)NF200(轴突标志)+β-APP(轴突损害标志)荧光双标染色:根据免疫荧光染色步骤加入一抗NF200、β-AP P,分别加入带绿色荧光的二抗Alexa Fluor488、带红色荧光的二抗Cy3并封片,在荧光显微镜下,NF200发绿色荧光,β-APP发红色荧光。将以上染色后的切片在40×物镜荧光显微镜下观察并拍摄照片。采用Image J软件对GFAP、NF200+β-APP图片进行荧光强度分析,采用SPSS Statistics 17软件行统计学分析,应用Graph Pad Prism软件进行作图。计量资料采用`x±s表示。多组间比较采用单因素方差分析,P0.05为差异有统计学意义,P0.01为差异有显著统计学意义。相关趋势变量采用Pearson相关分析。【结果】第一部分小鼠于免疫后第13-15天开始发病,2-3天后达疾病高峰,以尾部无力为首发症状的小鼠占大部分,亦有少部分小鼠以行走时平衡障碍发病,逐渐加重至肢体无力、肢体瘫痪。最高神经功能评分达5分,正常对照组小鼠无明显异常。对EAE小鼠脊髓切片HE染色可见大量淋巴细胞浸润,以血管周围显著,呈“袖套样”改变。而正常对照组未见病变。根据小鼠症状、神经功能评分及HE染色组织学改变说明构建EAE小鼠模型成功。第二部分(1)小鼠体重变化:小鼠接受抗原刺激后,体重开始出现下降,随着时间的推移,体重下降越来越明显。给予治疗后,雌激素组和ICA组EAE小鼠体重有明显增加(P0.01),治疗后各组与模型对照组比较,雌激素组和ICA组体重有明显改善(P0.01),雌激素组与ICA组比较无明显差异(P0.05)。(2)小鼠神经功能变化:雌激素组和ICA组EAE小鼠治疗后神经功能评分有明显改善(P0.05),治疗后各组与模型对照组比较,雌激素组和ICA组神经功能评分亦有明显好转(P0.05),雌激素组与ICA组比较无明显差异(P0.05)。(3)EAE小鼠存在星形胶质细胞异常及轴突损害:模型对照组GFAP(星形胶质细胞标志)荧光强度比正常组显著增高,同时细胞形态异常,数量增加,说明EAE小鼠存在星形胶质细胞活化增殖;模型对照组轴突(NF200标记)密度较正常组明显下降,说明EAE小鼠存在轴突损害。(4)ICA对EAE小鼠星形胶质细胞的影响:正常组的星形胶质细胞细胞体较小,突起如细丝状向周边延伸,形态未见异常,GFAP(星形胶质细胞标志)荧光强度低;模型对照组荧光强度比正常组显著增高(P0.05),且其处于活化状态,细胞形态异常,胞体增大且变得不规则,突起粗短;与模型对照组相比,雌激素组及ICA组荧光强度明显降低(P0.05),形态基本接近正常。雌激素组与ICA组比较无明显差异(P0.05)。(5)ICA对EAE小鼠轴突的影响:模型对照组轴突(NF200标记)密度较正常组明显下降(P0.01);雌激素、ICA治疗组轴突密度较模型对照组明显增高,均具有统计学意义,其中ICA组增高更明显(P0.01),雌激素组与ICA组之间未见明显差异(P0.05)。而在正常组未见损害轴突(β-APP标记),模型对照组β-APP荧光强度最高,表明轴突损害最严重,与模型对照组比较,经治疗后雌激素组和ICA组β-APP荧光强度均有明显下降(P0.01),雌激素组与ICA组之间未见明显差异(P0.05)。【结论】(1)EAE小鼠胼胝体内存在星形胶质细胞异常,表现为增殖活化状态,细胞形态异常,数量增加;且同时存在轴突损害,表现为轴突密度下降;(2)ICA治疗后,EAE小鼠胼胝体内星形胶质细胞活化减少,ICA可能通过抑制星形胶质细胞活化增殖来改善模型鼠神经功能损害;(3)ICA对EAE小鼠具有非炎性神经保护作用,可能与其调节轴突再生,减少轴突损害密切相关。
[Abstract]:[Objective] the central nervous system white matter demyelination is the main pathological feature of multiple sclerosis (MS). In recent years, the astrocyte abnormalities and axonal damage of MS have been gradually paid attention to. Our previous study confirmed that icariin (ICA) can affect inflammatory cytokines, and HPA axis pathway regulates inflammatory immunity. On the basis of the previous study, this study intends to continue to use the female C57BL/6 EAE mouse model characterized by remission type on the basis of the previous study. By observing the weight of mice and the changes of nerve function score in each group before and after the treatment. And the changes of GFAP (Dan Biao) and NF200+ beta -APP (double standard) immunofluorescence staining of the corpus callosum, explore the abnormalities of astrocyte and axon damage in the brain of EAE mice, and study the effect of ICA on it, and reveal whether ICA has non inflammatory neuroprotective effect on EAE. [Methods] the first part selected 65 7-9 weeks old C57BL/6 female mice at SPF level and 15 mice. For the normal control group, 50 rats were used to build the model. After the mice were anesthetized, the MOG35-55 antigen emulsion was injected subcutaneously on the two sides of the spinal column at the dose of 300ug in each mouse (four parts of the mice). The peritoneal injection of 500ng 100 day cough toxin was intraperitoneally injected after the day of inoculation and 48 hours after the inoculation, and the immunization was strengthened again after the first immunization. The 1 time. After immunization, the neurological function symptoms were observed and the neurological impairment was evaluated. 3 EAE mice and 3 normal mice were killed at the peak period of the disease. The spinal lumbar enlargement was used for HE staining. The histological changes of the spinal cord were observed under the light microscope to determine whether the model was successful. The second part would succeed in making the model. After the EAE mice were randomly assigned to 3 groups according to the principle of score, they were estrogen group (positive control group), group ICA, model control group, plus normal control group (blank control group), total of 4 groups, respectively given diethylstilbestrol 0.2mg/kg.d, ICA300mg/kg.d, 0.5% carboxymethyl cellulose sodium, equal capacity of 0.5% carboxymethyl cellulose sodium gavage. After 5 days of administration, the brain tissue was taken for sixth days after administration, and the brain tissue was perfused with paraformaldehyde at the heart. After being immobilized, the frozen sections were stained respectively after the sucrose was dehydrated: (1) GFAP (astrocyte marker) fluorescence single mark staining: according to the immunofluorescence staining steps, a anti GFAP, two anti Cy3 with red fluorescence and the fluorescence were added to the fluorescence. Under the microscope, GFAP hair red fluorescence; (2) NF200 (axon sign) + beta -APP (axon damage marker) fluorescent double labeling staining: according to immunofluorescence staining steps added to a anti NF200, beta -AP P, adding green fluorescence of the two anti Alexa Fluor488, red fluorescent two anti Cy3 and seal, under the fluorescence microscope, NF200 hair green fluorescence, beta -APP hair Red fluorescence. The above stained slices were observed and photographed under the 40 * objective microscope fluorescence microscope. Image J software was used to analyze the fluorescence intensity of GFAP and NF200+ beta -APP images. The SPSS Statistics 17 software was used for statistical analysis and Graph Pad Prism software was used for mapping. Using single factor analysis of variance, P0.05 was statistically significant and P0.01 had significant statistical significance. The correlation trend variable adopted Pearson correlation analysis. [results] the first part of the first part of the mice began to attack on the 13-15 day after the immunization, and reached the peak of the disease in 2-3 days. The mice were divided by walking balance disorder, and gradually increased to limb weakness and limb paralysis. The maximum nerve function score was 5 points. There was no obvious abnormality in the normal control group. A large number of lymphocyte infiltration was observed in the spinal section of EAE mice with HE staining, and the "sleeve like" changes were observed around the blood vessels, but the normal control group had no pathological changes. The mice symptoms, the neurological function score and the HE staining histological changes showed that the model of the EAE mice was successful. Second (1) the body weight changes in mice: the weight of mice began to decrease after receiving the antigen stimulation, and the weight loss became more and more obvious as time went on. After treatment, the weight of EAE mice in the estrogen group and the ICA group increased significantly (P0. 01), compared with the model control group, the weight of estrogen group and ICA group was significantly improved (P0.01), and there was no significant difference between the estrogen group and the ICA group (P0.05). (2) the changes of neural function in the mice were significantly improved (P0.05) after the treatment of the estrogen group and the ICA group of EAE mice (P0.05). The female group was compared with the model control group after treatment. There was a significant improvement in nerve function score in both group and ICA group (P0.05). There was no significant difference between the estrogen group and the ICA group (P0.05). (3) there was astrocyte abnormality and axon damage in EAE mice: the fluorescence intensity of GFAP (astrocyte marker) in the model control group was significantly higher than that in the normal group, and the cell morphology was abnormal and the number was increased, indicating that the EAE was small. The rat astrocytes were activated and proliferated; the density of the axon (NF200 markers) in the model control group was significantly lower than that in the normal group, indicating the axon damage in the EAE mice. (4) the effect of ICA on astrocytes in EAE mice: the astrocytes in the normal group were smaller, and the protuberances extended like the filaments to the periphery, and the morphology was not abnormal, GFAP (Star gum) The fluorescence intensity of the stromal cells was low, and the fluorescence intensity of the model control group was significantly higher than that of the normal group (P0.05), and it was in the activation state, the cell morphology was abnormal, the cell body increased and became irregular and the protuberance was short. Compared with the model control group, the fluorescence intensity of the estrogen group and the ICA group decreased significantly (P0.05), and the morphology was almost normal. Estrogen group and IC were almost normal. There was no significant difference in the A group (P0.05). (5) the effect of ICA on the axon of EAE mice: the density of the axon (NF200 marker) in the model control group was significantly lower than that in the normal group (P0.01). The axon density in the estrogen and ICA treatment group was significantly higher than that in the model control group, and all of them were statistically significant, and the increase of ICA group was more obvious (P0.01), and no between the estrogen group and the ICA group. There was no significant difference (P0.05) in the normal group (beta -APP). The fluorescence intensity of beta -APP in the model control group was the highest, indicating that the axon damage was the most serious. Compared with the model control group, the fluorescence intensity of the beta -APP in the estrogen group and the ICA group decreased significantly after treatment (P0.01), and there was no significant difference between the estrogen group and the ICA group (P0.05). (1) there was an abnormal astrocyte in the corpus callosum of EAE mice, which showed proliferation activation state, abnormal cell morphology, increasing number, and axon damage, showing a decrease in axon density. (2) after ICA treatment, the activation of astrocytes in the corpus callosum of EAE mice decreased, and ICA could inhibit the proliferation of astrocytes by inhibiting astrocytes. (3) ICA has a non inflammatory neuroprotective effect on EAE mice, which may be related to the regulation of axonal regeneration and axonal damage.
【学位授予单位】:广东药科大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:R277.7
【相似文献】
相关期刊论文 前10条
1 项红兵,田玉科;星形胶质细胞与疼痛敏化调控[J];临床麻醉学杂志;2003年09期
2 刘慧,王小军,胡荣,杨忠,蔡文琴;星形胶质细胞[J];生理科学进展;2004年01期
3 张敬军;;星形胶质细胞的研究[J];中国药理学通报;2006年07期
4 陈彬;刘宽;王伟;;成年大鼠神经元和星形胶质细胞细胞周期蛋白依赖性激酶抑制因子表达的差异研究[J];卒中与神经疾病;2007年05期
5 沈维高;何欣;王振江;;星形胶质细胞的生物学功能及其与疾病的关系研究进展[J];北华大学学报(自然科学版);2008年06期
6 ;英国科学家确定星形胶质细胞新功能[J];中国当代医药;2010年27期
7 靳哲;赵忠新;;星形胶质细胞在癫痫发病中的作用研究[J];世界临床药物;2012年01期
8 李军杰,张致身;短暂性脑缺血发作后海马区星形胶质细胞形态学研究[J];首都医科大学学报;1998年04期
9 解旭东,田国红;星形胶质细胞与癫痫[J];中风与神经疾病杂志;1999年01期
10 莫永炎,姜勇,陈瑗;脑星形胶质细胞生物学功能研究进展[J];生理科学进展;2002年01期
相关会议论文 前10条
1 刘庆莹;赵珠峰;朱长庚;;星形胶质细胞在癫痫复发中的作用[A];解剖学杂志——中国解剖学会2002年年会文摘汇编[C];2002年
2 唐爱辉;王同飞;王世强;;星形胶质细胞钙活动:脑细胞网络中的第二兴奋系统?[A];中国神经科学学会第六届学术会议暨学会成立十周年庆祝大会论文摘要汇编[C];2005年
3 池美珠;陈超;钱燕;李剑敏;吴步猛;;产前重复激素治疗对星形胶质细胞发育的影响[A];浙江省围产医学学术会议论文汇编[C];2005年
4 魏尔清;;半胱氨酰白三烯受体对星形胶质细胞功能的调节作用[A];中国药理学会第九次全国会员代表大会暨全国药理学术会议论文集[C];2007年
5 吴建云;王鲜忠;王剑;谌剑波;范光丽;张家骅;;大脑皮质星形胶质细胞培养及鉴定[A];中国畜牧兽医学会动物解剖学及组织胚胎学分会第十五次学术研讨会论文集[C];2008年
6 赵玉武;程晓娟;;星形胶质细胞与脑水肿的形成[A];山东省2013年神经内科学学术会议暨中国神经免疫大会2013论文汇编[C];2013年
7 董其平;柴真;;谷氨酸对培养的星形胶质细胞的钙活动的影响[A];“基因、进化与生理功能多样性”海内外学术研讨会暨中国生理学会第七届比较生理学学术会议论文摘要[C];2009年
8 曾俊;李康生;;柯萨奇病毒感染星形胶质细胞及细胞因子变化研究[A];新发和再发传染病防治热点研讨会论文集[C];2010年
9 鲍欢;徐晓云;顾晓波;徐霞红;胡晖;;缺氧后水通道蛋白4在体外培养星形胶质细胞表达变化的实验研究[A];中华医学会第十三次全国神经病学学术会议论文汇编[C];2010年
10 熊加祥;白云;宋敏;王艳艳;杨晓亚;;星形胶质细胞表达免疫分子维持大脑免疫稳态[A];中国神经科学学会第六届学术会议暨学会成立十周年庆祝大会论文摘要汇编[C];2005年
相关重要报纸文章 前7条
1 记者 胡德荣;星形胶质细胞由“天使”变“魔鬼”原因找到[N];健康报;2012年
2 记者 刘海英;星形胶质细胞可调节呼吸强度[N];科技日报;2010年
3 刘霞;脑内星形胶质细胞在实验室培育成功[N];科技日报;2011年
4 汪敏华;大脑星形胶质细胞有两种新功能[N];解放日报;2003年
5 吴一福;黄芪可调节星形胶质细胞“时间模式”[N];中国医药报;2005年
6 南方日报记者 曹斯 实习生 赵莞 张宁 通讯员 邹莹 张淼;用ATP对抗不快乐[N];南方日报;2013年
7 记者 班玮;德国脑细胞再生研究取得新进展[N];人民日报;2010年
相关博士学位论文 前10条
1 曾招;离子通道TRPM7调节细胞生理的分子机制研究[D];苏州大学;2014年
2 黄维一;骨髓间充质干细胞旁分泌因子对缺血性脑卒中后星形胶质细胞活性及功能的影响[D];南方医科大学;2015年
3 杨俊华;星形胶质细胞来源的ATP促进丘脑中的突触删除[D];浙江大学;2015年
4 邓雅婷;龙胆苦苷镇痛与抗抑郁的中枢作用及机制研究[D];第四军医大学;2015年
5 李新;星形胶质细胞NDRG2在七氟烷预处理神经保护作用中的机制研究[D];第四军医大学;2015年
6 钟志宏;亚铁离子对星形胶质细胞的损伤作用及香芹酚在实验性脑出血中的神经保护作用[D];上海交通大学;2014年
7 张建成;星形胶质细胞来源的IL-17A对缺血性脑卒中神经再生和功能恢复的影响及机制研究[D];华中科技大学;2015年
8 洪洋;孕酮对Aβ所致星形胶质细胞炎症反应的调节作用及机制研究[D];河北医科大学;2016年
9 凌云志;帕瑞昔布减轻过氧化氢诱导的大鼠星形胶质细胞氧化应激损伤的作用及机制研究[D];安徽医科大学;2015年
10 徐进;脑出血后星形胶质细胞AQP4内化及其机制的研究[D];重庆医科大学;2015年
相关硕士学位论文 前10条
1 龚佩佩;磷酸化MSK1在星形胶质细胞炎症活化过程中的作用的研究[D];南通大学;2013年
2 何洁玉;糖皮质激素对星形胶质细胞分泌GnRH的调控机制[D];西南大学;2015年
3 张丽丽;脂肪基质细胞诱导分化为星形胶质细胞过程中线粒体凋亡与自噬的关系[D];河北联合大学;2014年
4 燕茹;高同型半胱氨酸血症致ApoE~(-/-)小鼠脑血管、星形胶质细胞及神经元损伤作用研究[D];宁夏医科大学;2015年
5 米鹏霞;P物质对星形胶质细胞的活化作用及机制研究[D];山西医科大学;2015年
6 杨志奇;小鼠皮层内移植胶质细胞形态及功能重建研究[D];第三军医大学;2015年
7 陈雅南;敲除星形胶质细胞的dicer对中枢神经系统的影响[D];杭州师范大学;2015年
8 马辉;星形胶质细胞上酸敏感离子通道1a在颞叶癫痫发生中的作用研究[D];第四军医大学;2015年
9 周亚兰;IFN-γ介导T细胞参与炎性痛慢性化机制的研究[D];第二军医大学;2015年
10 邓子辉;瘦素抑制星形胶质细胞缝隙连接蛋白-43表达改善脑缺血再灌注损伤的机制研究[D];中国人民解放军医学院;2015年
,本文编号:1808378
本文链接:https://www.wllwen.com/yixuelunwen/mazuiyixuelunwen/1808378.html