当前位置:主页 > 医学论文 > 泌尿论文 >

间充质干细胞通过活化M2型巨噬细胞减轻急性肾损伤的机制研究

发布时间:2018-07-11 17:27

  本文选题:间充质干细胞 + 横纹肌溶解 ; 参考:《中国人民解放军医学院》2014年博士论文


【摘要】:研究背景横纹肌溶解(rhabdomyolysis,RM)指任何原因引起的广泛的横纹肌细胞坏死,肌细胞内容物外漏至细胞外液及血液循环中,导致急性肾损伤(acute kidney injury, AKI)、电解质紊乱等一系列并发症,重症患者预后极差。与肌红蛋白尿相关的AKI是创伤和非创伤性横纹肌溶解最严重的并发症,现有治疗无法根本改善其预后。如何提高RM后肾小管上皮细胞坏死的修复再生、降低AKI死亡率,一直是医学界研究的重大课题。近年来骨髓间充质干细胞(mesenchymal stem cells, MSCs)在急慢性肾脏病中的应用日益受到关注,给AKI的治疗指明新的方向。多项研究均证实,MSCs治疗可明显改善肾小管损伤并有利于肾功能的恢复。巨噬细胞是天然免疫系统中重要的调节细胞,可分为经典活化的M1型巨噬细胞和替代性活化的M2型巨噬细胞两种极性状态。M2型巨噬细胞具有抑制炎症反应,促进组织重塑和再生修复的功能。体外研究中MSCs可与巨噬细胞相互作用,促进M2型巨噬细胞的产生。那么,诱导M2型巨噬细胞的生成是否是MSCs减轻AKI的机制?目前尚无相关报道。本研究旨在建立RM所致AKI的小鼠动物模型,探讨MSCs是否通过诱导M2型巨噬细胞的生成来减轻AKI,为阐明MSCs治疗减轻AKI的机制提供理论依据。 方法第一部分C57BL/6小鼠经双下肢肌肉注射50%甘油8ml/kg建立RM所致AKI模型,观察第6h、12h、24h、48h、72h、96h、120h和168h时间点血尿素氮(BUN)、肌酐(Cr)和磷酸肌酸激酶(CK)的变化趋势,以及肾脏、肌肉和肺脏的病理改变。将C57BL/6小鼠随机分为Sham+生理盐水(NS)组、Sham+MSCs组、RM+NS组和RM+MSCs组。6小时后,MSCs组给予1×106个红色荧光蛋白(RFP)标记的C57BL/6小鼠骨髓来源的MSCs尾静脉注射, NS组给予等体积的生理盐水尾静脉注射;(1)生化检测血BUN、Cr和CK水平(n=10);(2)酶联免疫吸附测定法(ELISA)检测血清细胞因子IL-6、TNF-α和IL-10水平(n=5);(3)光镜观察肌肉和肾脏病理损伤程度,计算肾小管坏死评分(n=4);(4)PCNA免疫组化评价肾小管上皮细胞损伤后增殖情况(n=5);(5)双光子显微镜检测RFP标记的MSCs在RM模型小鼠各器官的定植情况(n=3)。 第二部分C57BL/6小鼠经50%甘油8ml/kg肌肉注射建立RM模型,随机分为RM+NS组和RM+MSCs组,n=5。取第24h、48h和72h的肾脏组织,免疫荧光技术检测巨噬细胞(F4/80)浸润数量的变化和M2型巨噬细胞(CD206)浸润数量的变化;Western Blot检测横纹肌溶解后不同时间点的肾脏组织M2型巨噬细胞标志物CD206的表达水平。第24小时,Western Blot检测sham+NS组、sham+MSCs组、RM+NS组和RM+MSCs组的M2型巨噬细胞标志物CD206表达情况。在损伤后第24小时,以MSCs治疗的横纹肌溶解AKI小鼠为研究对象,使用氯屈膦酸二钠脂质体清除其体内的巨噬细胞,空白脂质体作为对照,观察两组小鼠在第48h和72h血BUN、Cr和肾脏病理的改变。 第三部分将小鼠巨噬细胞系RAW264.7细胞分为三组:常规培养的细胞为M0组,脂多糖(LPS)2.5ug/ml刺激2h的细胞为M1组,LPS刺激后并与MSCs共培养72小时的细胞为M2组。使用细胞免疫荧光检测三组细胞的巨噬细胞表面标志物F4/80和M2型巨噬细胞表面标志物CD206的表达,流式细胞技术检测各组的CD206和IL-10表达,ELISA检测不同时间点培养液上清IL-6、TNF-α和IL-10的水平(n=5)。使用氯膦酸二钠脂质体清除小鼠体内巨噬细胞,然后建立横纹肌溶解AKI模型,并随即尾静脉注射1×107个M0组、M1组和M2组的RAW264.7细胞(n=5)。在AKI的第72h检测血BUN、Cr和肾脏病理。 结果本研究第一部分,成功建立了C57BL/6小鼠RM所致AKI模型,损伤后血BUN、Cr和CK进行性升高,并观察到CK于第24小时达峰值,BUN和Cr于第72小时达峰值的趋势。第6h经尾静脉注射1×106个MSCs或等体积的NS对照,发现MSCs治疗使RM小鼠血BUN、Cr和CK水平明显下降(P0.01),,血促炎细胞因子IL-6和TNF-α的水平明显下降(P0.01),血抑炎细胞因子IL-10的水平明显升高(P0.01)。肾组织PAS染色显示RM+MSCs组的肾小管损伤减轻,肾小管坏死评分下降。PCNA免疫组化见RM+MSCs组的肾小管上皮细胞明显增生。双光子显微镜活体检测MSCs主要定植在肺脏和肌肉,肾脏未发现RFP标记的MSCs,并用组织免疫荧光证实。 本研究第二部分,组织免疫荧光发现RM发生后,肾脏的巨噬细胞浸润逐渐增加,RM+MSCs组肾组织CD206阳性的M2型巨噬细胞提前出现。WesternBlot证实RM+MSCs组肾脏M2型巨噬细胞标志物CD206的表达水平显著高于RM+NS组(P0.01),且表达在损伤后呈上升趋势。不同组肾脏CD206表达分析发现:损伤后第24小时,仅RM+MSCs组出现CD206的明显表达(P0.01)。MSCs治疗AKI小鼠的巨噬细胞清除实验证实,在第24小时清除M2型巨噬细胞使第48h和72h小鼠的血BUN和Cr再次升高,伴肾脏损伤病理加重。 本研究第三部分,细胞免疫荧光检测M0组、M1组及M2组的RAW264.7细胞均表达F4/80,仅M2组高表达CD206。流式细胞技术检测发现M2组的RAW264.7细胞高表达CD206和IL-10。ELISA测定RAW264.7培养液上清细胞因子浓度,LPS使IL-6和TNF-α的水平升高,MSCs使IL-6和TNF-α的水平降低、IL-10的水平升高(P0.01)。氯屈膦酸二钠脂质体清除小鼠体内的巨噬细胞后建立横纹肌溶解AKI模型,空白脂质体作为对照组,给予不同组巨噬细胞过继转移,损伤后第72小时发现接受M2组RAW264.7细胞小鼠的血清BUN、Cr和病理损伤均较对照组、M0组和M1组明显减低(P0.01)。 结论(1)MSCs治疗可调节体内炎症反应,减轻RM所致AKI;(2)MSCs不通过直接定植于肾脏发挥保护作用;(3)MSCs治疗促进肾脏M2型巨噬细胞浸润的数量增加,清除巨噬细胞使已减轻的肾损伤再次加重(4)MSCs可在体外诱导巨噬细胞向M2型的转换。(5)过继转移M2型巨噬细胞可改善RM所致的AKI。
[Abstract]:Background rhabdomyolysis (rhabdomyolysis, RM) refers to a wide range of rhabdomyocyte necrosis caused by any cause, muscle cell contents leaking into extracellular fluid and blood circulation, causing acute renal injury (acute kidney injury, AKI), electrolyte disorder and a series of disorders. The prognosis of severe patients is very poor. The AKI related to myoglobin urine is very poor. It is the most serious complication of traumatic and non traumatic rhabdomyolysis. Existing treatment can not improve its prognosis. How to improve the repair and regeneration of tubular necrosis of renal tubular cells after RM and reduce the mortality of AKI has been a major issue in the medical field. In recent years, bone marrow mesenchymal stem cells (mesenchymal stem cells, MSCs) are in acute and chronic kidney. A number of studies have confirmed that MSCs therapy can obviously improve renal tubular injury and benefit the recovery of renal function. Macrophages are important regulatory cells in the natural immune system, which can be divided into classical activated M1 type macrophages and alternative activated M2 type megagagi. .M2 type macrophages of two polar states have the function of inhibiting inflammatory response and promoting tissue remodeling and regeneration. In vitro, MSCs can interact with macrophages to promote the production of M2 type macrophages. Then, is the mechanism of inducing M2 type macrophages to be a mechanism for MSCs to reduce AKI? There is no related report. This study aims at this study. In the establishment of a mouse model of AKI induced by RM, it is discussed whether or not MSCs reduces AKI by inducing the formation of M2 type macrophages, providing a theoretical basis for clarifying the mechanism of MSCs therapy to alleviate AKI.
Methods in part 1, C57BL/6 mice were injected with 50% glycerol 8ml/kg to establish a RM induced AKI model, and the changes in blood urea nitrogen, creatinine and creatine kinase were observed at 6h, 12h, 24h, 48h, 72h, 96h, 120h and 168h time, and the pathological changes of the kidney, muscle and lungs. After.6 hours in group NS, group Sham+MSCs, group RM+NS and RM+MSCs, group MSCs was given MSCs tail vein of bone marrow of C57BL/6 mice with 1 x 106 red fluorescent protein (RFP) labeled C57BL/6 mice, and NS group was given equal volume of saline tail vein, and (1) biochemical test of BUN, Cr and levels; (2) enzyme linked immunosorbent assay Test serum cytokine IL-6, TNF- alpha and IL-10 level (n=5); (3) observe pathological damage of muscle and kidney and calculate renal tubular necrosis score (n=4); (4) PCNA immunohistochemistry to evaluate the proliferation of renal tubular epithelial cells (n=5); (5) double light microscopy detection of MSCs in RFP markers in each organ of RM model mice Condition (n=3).
The second part of C57BL/6 mice were injected with 50% glycerol and 8ml/kg to establish RM model. They were randomly divided into group RM+NS and RM+MSCs group. N=5. took the renal tissue of 24h, 48h and 72h. The changes in the number of macrophage (F4/80) infiltration and the quantity of M2 macrophage (CD206) were detected by immunofluorescence. The expression level of M2 type macrophage marker CD206 of the kidney tissue at the same time. Twenty-fourth hours, Western Blot was used to detect the expression of CD206 expression of M2 type macrophage markers in group sham+NS, sham+MSCs, RM+NS and RM+MSCs. Twenty-fourth hours after the injury, AKI mice were dissolved in the rhabdomydric acid two with MSCs treatment, and chlordric acid two was used. Sodium liposomes scavenged macrophages in vivo and blank liposomes as controls. The changes of BUN, Cr and renal pathology in 48h and 72h blood of two groups of mice were observed.
In the third part, the mouse macrophage RAW264.7 cells were divided into three groups: the conventional cultured cells were group M0, the lipopolysaccharide (LPS) 2.5ug/ml stimulated 2H cells in the M1 group, and the LPS stimulated and the MSCs co cultured for 72 hours was the M2 group. The macrophage surface markers, F4/80 and M2 macrophages, were detected by cell immunofluorescence. The expression of surface marker CD206, CD206 and IL-10 expression in each group were detected by flow cytometry. ELISA was used to detect the level of IL-6, TNF- A and IL-10 (n=5) at different time points. Chlorphosphonic acid two sodium liposomes were used to remove macrophages in mice, and then a rhabdomyolysis AKI model was established, and then 1 x 107 M0 groups were injected into the tail vein, M1. M1 RAW264.7 cells (n=5) in group M2 and group AKI were detected in BUN, Cr and renal pathology at 72h of AKI.
Results in the first part of this study, the AKI model induced by RM in C57BL/6 mice was successfully established. The blood BUN, Cr and CK were increased after injury, and the peak value of CK at twenty-fourth hours was observed, and the peak value of BUN and Cr at seventy-second hours was reached. 1 * 106 MSCs or equal volume NS controls were injected through the tail vein. Significantly decreased (P0.01), blood proinflammatory cytokines IL-6 and TNF- alpha significantly decreased (P0.01), the level of blood suppressor cell factor IL-10 increased significantly (P0.01). Renal tissue PAS staining showed that renal tubule injury in group RM+MSCs was reduced, renal tubular necrosis score decreased in.PCNA immunization, and the renal tubular epithelial cells in the RM+MSCs group were obviously proliferated. In vivo, MSCs was mainly colonized in lungs and muscles, and no RFP labeled MSCs was found in the kidneys. The results were confirmed by tissue immunofluorescence.
In the second part of this study, tissue immunofluorescence found that the infiltration of macrophages in the kidneys increased gradually, and the CD206 positive M2 macrophages in the RM+MSCs group showed.WesternBlot in group RM+MSCs, which showed that the expression level of CD206 of the M2 type macrophage marker in the RM+MSCs group was significantly higher than that in the RM+NS group (P0.01), and the expression increased after the injury. Trend. CD206 expression analysis in different groups of kidneys found that twenty-fourth hours after injury, only RM+MSCs group showed CD206 obvious expression (P0.01).MSCs treatment of AKI mice macrophage clearance experiment confirmed that the clearance of M2 type macrophages in twenty-fourth hours made 48h and 72h mice blood BUN and Cr increased again, with the pathological aggravation of renal injury.
The third part of this study, cell immunofluorescence test M0 group, M1 group and M2 group RAW264.7 cells all express F4/80, only M2 group high expression CD206. flow cytometry detection found that RAW264.7 cells in M2 group high expression CD206 and IL-10.ELISA determine the concentration of cell factor in the RAW264.7 culture liquid supernatant. The level of F- alpha and the level of IL-10 increased (P0.01). After scavenging of chlordronic acid two liposomes, the rhabdomyolysis AKI model was established. The blank liposomes were used as the control group, and the macrophages were adoptive and transferred in different groups. The serum BUN, Cr and pathological lesion of the M2 group RAW264.7 cell mice were found after seventy-second hours of injury. The injury was significantly lower in the M0 group and the M1 group than in the control group (P0.01).
Conclusion (1) MSCs therapy can regulate the inflammatory response in the body and reduce the AKI caused by RM; (2) MSCs does not use the direct colonization of the kidney to protect the kidney; (3) MSCs therapy promotes the increase in the number of M2 macrophage infiltration in the kidney, and clears the macrophages to aggravate the reduced renal injury (4) MSCs can induce the conversion of macrophage to M2 type in vitro. 5) adoptive transfer of M2 macrophages can improve the AKI. induced by RM.
【学位授予单位】:中国人民解放军医学院
【学位级别】:博士
【学位授予年份】:2014
【分类号】:R692

【相似文献】

相关期刊论文 前10条

1 叶天星,曹雪涛;巨噬细胞作用的新概念:正反两面性[J];国外医学(免疫学分册);1990年02期

2 彭则;呼吸道细菌感染及在巨噬细胞上的信息传递途径[J];国外医学.呼吸系统分册;1999年01期

3 付平,许国章;巨噬细胞与肾损伤[J];国外医学.泌尿系统分册;2000年06期

4 夏飞,刘胜武,魏雅稚,肖凌;结核分枝杆菌诱导宿主巨噬细胞凋亡机制初探[J];中华微生物学和免疫学杂志;2005年06期

5 葛晶;成蓓;;过氧化物酶体增殖体激活受体和肝X受体对巨噬细胞作用的研究进展[J];国外医学(老年医学分册);2006年01期

6 张凤;熊思东;;巨噬细胞的极化及其意义[J];细胞生物学杂志;2007年01期

7 韩君勇;李艳波;;不同压力对巨噬细胞ATP结合盒转运子A_1表达的影响[J];中国心血管病研究;2008年05期

8 熊思东;;疾病发病中的巨噬细胞极化:机制与作用[J];现代免疫学;2010年05期

9 吴虢东;张才军;王玲;吴磊;寸新华;曹霞;;抗结核天然药物筛选的巨噬细胞模型研究[J];昆明医学院学报;2010年11期

10 李丹;任亚娜;范华骅;;巨噬细胞的分类及其调节性功能的差异[J];生命科学;2011年03期

相关会议论文 前10条

1 宋盛;周非凡;邢达;;PDT诱导的凋亡细胞对巨噬细胞NO合成的影响[A];第七届全国光生物学学术会议论文摘要集[C];2010年

2 张磊;朱建华;黄元伟;姚航平;;血管紧张素Ⅱ对巨噬细胞(THP-1重细胞)凝集素样氧化低密度脂蛋白受体表达的影响[A];浙江省免疫学会第五次学术研讨会论文汇编[C];2004年

3 宋盛;邢达;周非凡;;PDT诱导的凋亡细胞对巨噬细胞NO合成的影响[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年

4 赵莉;姚树桐;田华;杨娜娜;桑慧;焦鹏;王义围;秦树存;;氧化高密度脂蛋白通过内质网应激凋亡途径诱导巨噬细胞凋亡[A];第十二届全国脂质与脂蛋白学术会议论文汇编[C];2014年

5 洪敏;余黎;华永庆;朱荃;;雌二醇激活巨噬细胞及内异症药物效应靶点的研究[A];中国药理学会第八次全国代表大会暨全国药理学术会议论文摘要汇编[C];2002年

6 唐澜;王丽;付度关;赵勇;曾和松;;瘦素对巨噬细胞白介素-1表达的影响[A];中华医学会心血管病学分会第八次全国心血管病学术会议汇编[C];2006年

7 郭紫芬;袁皓瑜;郭琰;庹勤慧;廖端芳;;依泽替米贝通过调控基因表达抑制巨噬细胞内脂质蓄积[A];第七届海峡两岸心血管科学研讨会论文集[C];2009年

8 王少霞;李杨;杨蕾蕾;左红艳;刘肖;徐新萍;王德文;;极低频电磁场暴露对大鼠肺组织中巨噬细胞的影响[A];第十三届中国体视学与图像分析学术会议论文集[C];2013年

9 丁晨光;田普训;薛武军;郑瑾;段万里;赵艳龙;席敏;李杨;;Treg诱导巨噬细胞向M2型转化的作用研究[A];2013中国器官移植大会论文汇编[C];2013年

10 吕建新;金丽琴;袁谦;金晶;彭颖;李东;;巨噬细胞激活的标志物研究[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(上册)[C];2001年

相关重要报纸文章 前10条

1 通讯员 李静 记者 胡德荣;恶性肿瘤巨噬细胞未必皆“恶人”[N];健康报;2014年

2 兰克;以尝试用巨噬细胞治瘫痪[N];科技日报;2000年

3 薛佳;免疫系统——人体的“卫士”[N];保健时报;2009年

4 侯嘉 何新乡;硒的神奇功能[N];中国食品质量报;2003年

5 记者 胡德荣;铁泵蛋白“维稳”铁代谢作用首次阐明[N];健康报;2011年

6 唐颖 倪兵 陈代杰;巨噬细胞泡沫化抑制剂研究快步进行[N];中国医药报;2006年

7 刘元江;新发现解释肿瘤为何易成“漏网之鱼”[N];医药经济报;2007年

8 本报记者 侯嘉 通讯员 何新乡;今天你补硒了吗[N];医药经济报;2003年

9 左志刚;升血小板药使用注意[N];医药养生保健报;2007年

10 记者 许琦敏;“铁泵”蛋白帮助回收铁元素[N];文汇报;2011年

相关博士学位论文 前10条

1 戴菱菱;巨噬细胞的替代激活抑制脂毒性引起的巨噬细胞死亡[D];中南大学;2013年

2 马翠卿;GAS下调巨噬细胞炎症因子的作用及机制研究[D];河北医科大学;2011年

3 黄亚东;兔不同亚型单核/巨噬细胞与动脉粥样硬化发病关系的研究[D];中国协和医科大学;1991年

4 刘灏;巨噬细胞再极化[D];重庆医科大学;2011年

5 高飞;年龄相关性巨噬细胞极化对骨修复再生作用的研究[D];华中科技大学;2013年

6 刘芳;ABCG1基因表达对巨噬细胞功能影响及在动脉粥样硬化中作用的研究[D];北京协和医学院;2014年

7 周江睿;神经肽Y对巨噬细胞炎性因子和小分子炎症介质的调节及机制研究[D];第二军医大学;2012年

8 赵鲁杭;黄芪多糖的制备及其对巨噬细胞和树突状细胞免疫功能的影响[D];浙江大学;2011年

9 潘宇飞;信号调节蛋白α调节肿瘤相关巨噬细胞功能的作用与机制研究[D];第二军医大学;2013年

10 陆宁;巨噬细胞中表皮生长因子受体激活对细胞因子及实验性结肠炎的调节作用[D];天津医科大学;2014年

相关硕士学位论文 前10条

1 蒋璐;运动对大鼠巨噬细胞游离铁代谢的影响及机制探讨[D];江苏大学;2007年

2 朵瑞雪;免疫突触的形成对类风湿关节炎中巨噬细胞凋亡率影响的研究[D];第四军医大学;2011年

3 刘丹霞;结核杆菌对感染宿主巨噬细胞应激的调控作用及其机制研究[D];石河子大学;2013年

4 陈南鹏;肿瘤相关巨噬细胞的定量蛋白质组学研究[D];暨南大学;2011年

5 谢燕霞;芦笋多糖对巨噬细胞的免疫调节研究[D];山东师范大学;2008年

6 刘译聪;巴西天然蜂胶对牙龈卟啉单胞菌激活的巨噬细胞极化的调控及机制探讨[D];吉林大学;2014年

7 文明智;红霉素对香烟刺激的人巨噬细胞炎症介质的影响[D];广西医科大学;2010年

8 叶金善;环氧化酶-2/前列腺素E_2在血管紧张素Ⅱ刺激巨噬细胞表达细胞外基质金属蛋白酶诱导因子中的作用[D];第三军医大学;2010年

9 闫坤;前列腺素E1对小鼠子宫巨噬细胞表型和功能活性的影响[D];河南师范大学;2011年

10 汪韶君;扇贝裙边糖胺聚糖对巨噬细胞脂蛋白代谢及脂蛋白受体表达的影响研究[D];青岛大学;2006年



本文编号:2116024

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/mjlw/2116024.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户02d60***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com