线粒体分裂相关蛋白高表达参与阿霉素大鼠肾病模型蛋白尿的发生
[Abstract]:Aim: to investigate the relationship between the expression of mitochondrial kinetic associated protein 1 (Drp1), P-Drp1 (Ser616) and mitochondrial mitogen 1 (Fis1) and podocyte injury and proteinuria. Methods: the rat model of adriamycin nephropathy was established. The expression of Drp1,P-Drp1 (Ser616) and Fis1 in glomerular and renal cortex were detected by immunohistochemistry and western blot. The correlation between the expression of these proteins and proteinuria and mitochondrial morphology of podocytes was analyzed. Effects of overexpression of Drp1, on apoptosis and mitochondrial morphology in mouse podocyte cell line MPC5. Results: the expression of glomerular and cortical Drp1 was increased at 4 and 6 weeks, glomerular P-Drp1 (Ser616) was increased at 6 weeks, and glomerular Fis1 was enhanced at 2 and 6 weeks in adriamycin induced nephropathy model. The expression of P-Drp1 (Ser616) and Fis1 in glomerulus and cortex of Drp1, were positively correlated with 24 h urinary protein. Glomerular Drp1 expression was negatively correlated with mitochondrial cytoplasmic density and mitochondrial cell density. Glomerular P-Drp1 (Ser616) was negatively correlated with the maximum aspect ratio of mitochondria in podocytes. Glomerular Fis1 was negatively correlated with mitochondrial area and perimeter of podocytes. Overexpression of Drp1 resulted in increased apoptosis and mitochondrial fragmentation in mouse podocytes. Conclusion: the overexpression of Drp1,P-Drp1 (Ser616) and Fis1 in glomeruli is involved in the development of proteinuria in adriamycin-induced nephropathy model, and Drp1 overexpression leads to mitochondrial fragmentation and podocyte apoptosis.
【作者单位】: 北京大学第一医院儿科;北京大学第一医院中心实验室;北京大学第一医院医学统计室;
【基金】:国家自然科学基金(81570639,81100502) 教育部新世纪优秀人才支持计划(NCET-12-0006)
【分类号】:R692;R-332
【相似文献】
相关期刊论文 前10条
1 张子怡;张勇;;线粒体动态变化与线粒体质量控制:运动的适应与调节[J];中国运动医学杂志;2011年09期
2 张宁;王士雷;李淑虹;李瑜;王鹏;贾长新;;线粒体分裂蛋白抑制剂在大鼠脑缺血再灌注损伤中的作用及其机制(英文)[J];现代生物医学进展;2013年18期
3 杨轶;杨敏;;线粒体融合与分裂:治疗缺血性心脏疾病的潜在靶点[J];今日药学;2012年12期
4 阿力木江·买买提江;高秀芳;金波;施海明;;线粒体动力学与心肌细胞能量代谢的研究进展[J];复旦学报(医学版);2013年05期
5 郝希纯;王东明;;Drp1蛋白调节线粒体分裂机制及其在疾病中的作用[J];广东医学;2011年08期
6 贺文凤;曹青;洪葵;;线粒体对iPSC再程序化的影响[J];基础医学与临床;2013年03期
7 张倩;张宏伟;夏建华;连亚军;谢南昌;;线粒体分裂蛋白抑制剂对癫痫大鼠海马神经元凋亡的影响[J];河南医学研究;2014年02期
8 许美芬;何轶群;管敏鑫;;线粒体融合、分裂与神经变性疾病[J];中国生物化学与分子生物学报;2013年12期
9 韩小建;万玉英;杨章坚;张剑锋;危永芳;赖启南;;利用蛋白导入法沉默线粒体分裂调节蛋白Drp1的表达[J];重庆医科大学学报;2014年05期
10 于滢;李俊平;王瑞元;;运动对不同组织线粒体动力学相关蛋白的影响[J];中国运动医学杂志;2014年06期
相关会议论文 前5条
1 杨轶;杨敏;;线粒体融合与分裂:治疗缺血性心脏疾病的新靶点?[A];2011年中国药学大会暨第11届中国药师周论文集[C];2011年
2 杨轶;刘居理;杨敏;;线粒体融合和分裂与心脏疾病[A];中国药理学会第十一次全国学术会议专刊[C];2011年
3 于滢;王瑞元;;运动对不同组织线粒体动力学的影响[A];2013年中国生理学会运动生理学专业委员会年会暨“运动与健康”学术研讨会论文摘要汇编[C];2013年
4 于滢;王瑞元;;运动对不同组织线粒体动力学的影响[A];2013年中国生理学会运动生理学专业委员会年会暨“运动与健康”学术研讨会论文摘要汇编[C];2013年
5 杨轶;杨敏;;线粒体融合与分裂:治疗缺血性心脏疾病的潜在靶点~[A];2014年广东省药师周大会论文集[C];2014年
相关博士学位论文 前5条
1 李国兵;Cofilin调控肿瘤细胞凋亡和线粒体自噬的作用机制及其干预策略研究[D];第三军医大学;2015年
2 陈方哲;PINK1基因通过线粒体分裂融合途径对脑缺血的神经保护作用[D];复旦大学;2013年
3 李夏春;人全长Tau蛋白过度表达对线粒体分裂融合动态及细胞退变的影响[D];华中科技大学;2013年
4 高丹忱;Dynamins在小鼠心肌缺血再灌注损伤中的作用机制及Dynasore的保护作用[D];浙江大学;2013年
5 刘玉和;氧化应激诱导宫颈癌细胞死亡过程中溶酶体—线粒体途径的作用机制[D];吉林大学;2009年
相关硕士学位论文 前10条
1 韩双雪;淫羊藿苷修复阿尔兹海默症线粒体分裂—融合动力学失衡的机制研究[D];深圳大学;2015年
2 陈咪咪;MCU介导线粒体分裂蛋白Drp-1在人中性粒细胞迁移中的作用[D];南方医科大学;2015年
3 张楠;大鼠骨骼肌钝挫伤恢复过程中线粒体融合—分裂基因表达情况的研究[D];山东体育学院;2015年
4 周永方;线粒体分裂调控因子drp-1对于线虫寿命的调节功能研究[D];杭州师范大学;2016年
5 陈俊莉;阿魏酸通过诱导线粒体自噬保护糖氧剥夺引起的内皮细胞损伤[D];广州中医药大学;2016年
6 王瑞肖;解偶联蛋白2减缓高糖加重缺氧性神经细胞损伤及其与线粒体分裂/融合关系的实验研究[D];宁夏医科大学;2016年
7 曹海燕;线粒体分裂与钙信号交互作用促进肝癌转移的作用机制研究[D];第四军医大学;2016年
8 王颖;血红素氧合酶1对内毒素致急性肺损伤大鼠的线粒体融合—分裂的影响[D];天津医科大学;2016年
9 李刚;线粒体分裂抑制剂-1在大鼠急性脊髓损伤中的保护作用及其机制[D];辽宁医学院;2015年
10 申菲菲;线粒体分裂在甲状腺鳞癌细胞SW579细胞增殖、凋亡以及侵袭中的作用[D];辽宁医学院;2015年
,本文编号:2421168
本文链接:https://www.wllwen.com/yixuelunwen/mjlw/2421168.html