高血糖导致小肠电节律紊乱及小肠电刺激对2型糖尿病血糖调控的研究
[Abstract]:First, research background and objective gastrointestinal tract is an important endocrine organ of the human body. Gastrointestinal function is of great significance for the regulation of blood sugar. On the one hand, high blood sugar can affect gastrointestinal motility, cause nausea, vomiting, abdominal pain, fullness and other discomfort symptoms, affect blood sugar control; on the other hand, gastrointestinal motility changes affect nutrient absorption and gastrointestinal Hormone secretion can also cause blood sugar changes. So the treatment of gastrointestinal motility can be used to interfere with hyperglycemia. The gastrointestinal myoelectric activity is closely related to gastrointestinal motility. At present, hyperglycemia can cause gastroelectric disorder. However, the measurement of small intestinal myoelectric activity is difficult, and whether hyperglycemia can cause the study of intestinal rhythmic disorders is the most important. Less. Autonomic nervous dysfunction is also an important complication of diabetic patients, but its role in hyperglycemic induced intestinal dysrhythmicity is not yet known. Therefore, this study explored the effects and mechanisms of hyperglycemia on small intestinal myoelectric activity, as well as the use of autonomic nerves in the intestinal electromyography. Electrical stimulation (IES) can affect gastrointestinal motility, secretion of gastrointestinal hormones, absorption of nutrients, and loss of weight, which is expected to become one of the new treatments for patients with type 2 diabetes. (1) in the model of type 2 diabetes, the acute and chronic effects of IES on blood glucose are explored; (2) from gastrointestinal motility, gastrointestinal hormones, appetite, body weight, pancreas Island function and other aspects of the possible mechanisms for IES to play a hypoglycemic effect. Two, method 1, hyperglycemia induced small intestinal dysregulation with autonomic dysfunction (1) experimental animals: male spontaneous diabetes Goto-Kakizaki (GK) rats and control Wistar Kyoto (WKY) rats; all rats were treated with duodenal electrode implantation before experiment and Subcutaneous electrocardiogram electrode implantation. (2) recording small intestinal myoelectric activity and electrocardiogram. (1) spectrum analysis of small intestinal myoelectric activity and electrocardiogram. The main parameters include the main frequency of slow wave (DF), the main power (DP), the percentage of normal small intestinal slow wave frequency (%of NSW), the number of fast wave front potential per minute. (2) analysis of the center rate of electrocardiogram at the same time HRV, extracting low frequency (LF) and high frequency (HF) signals and calculating the LF/HF ratio to evaluate autonomic function. (3) determination of glycated hemoglobin level (Hb A1c) and oral glucose tolerance test (OGTT) at different time points. Calculate the area of blood glucose under the blood sugar curve (AUC). (4) another group of WKY rats give injection of glucagon to simulate hyperglycemia Changes in blood sugar and small intestine electric rhythm and changes in autonomic nervous function of the heart. (5) analysis of the correlation between blood glucose level and small intestinal rhythm regulation.2, the acute effect and mechanism of small intestinal electrical stimulation on the regulation of blood glucose in type 2 diabetic rats (1) experimental animals: 20 male rats, 10 WKY rats, and duodenal electricity before the test. Extremely burial operation, the electrode traverse of the rat's neck subcutaneous and external stimulator. (2) group: select two groups of stimulation parameters and no stimulation state (Sham group) to compare the effect of hypoglycemic. Parameters 1 groups: wave width 3MS, amplitude 2mA, pulse 0.6s on, 0.9s off, frequency 40Hz, this parameter is considered to be able to change the gastrointestinal motility. Parameter 2: wave width 0.3ms, and the rest and reference The parameters were 1 the same, and the parameters were considered to be able to improve the autonomic nerve activity. And the Sham group was used as a control. The following study was conducted in the two groups of the most effective parameters. (3) OGTT, 0,15,30,60120180min blood glucose, and acute IES hypoglycemic effect. 0,30,60120min blood insulin, glucagon like peptide 1 (GLP) was measured by the ELISA method in the tail vein. -1) level. (4) insulin tolerance test (ITT), determination of 0,30,60120min blood sugar and the effect of acute IES on insulin sensitivity. (5) acute IES combined with GLP-1 antagonists, observation of blood glucose changes in OGTT, and the role of GLP-1 in acute IES. (6) the effect of acute IES on gastric emptying and small intestinal transport is.3, small intestinal electrical stimulation to type 2 diabetes mellitus The chronic effect and mechanism of blood glucose regulation in rats (1) experimental animals: 20 male GK rats and 10 WKY rats, a pair of electrodes were embedded in the duodenum, and the electrode wire was connected to the stimulator by external tether system. (2) the GK rats were divided into IES and Sham groups randomly: (1) the IES group received continuous 12h continuous stimulation for 8 weeks (0.6s). On, 0.9s off, 40Hz, 3MS, 2m A). (2) the difference between the Sham group and the WKY group was not stimulated. The difference between the IES and Sham group was compared. (3) the BioDAQ eating monitoring system continuously and automatically monitored the daily feeding status of the rats. (4) the body weight and the fasting blood glucose were monitored every week. (5) the baseline, 4 weeks, and 8 weeks of blood glucose differences were compared. (6) baseline and 8 weeks C, ITT, (7) eighth weeks OGTT synchronous blood sampling for insulin, GLP-1 level. (8) the effect of chronic IES on pancreatic weight, islet morphology, and beta cell number. Three, 1, high blood sugar induced intestinal dysregulation with autonomic dysfunction (1) diabetic rats, OGTT: blood glucose and AUC were significantly higher than normal rats. (2) the fasting and postprandial small intestine in diabetic rats The regularity of electrical rhythm decreased (P0.001). (3) the activity of vagus and the sympathetic vagus balance index increased (P0.05) in diabetic rats. (4) the regularity of the slow wave of the small intestine in diabetes and normal rats was negatively correlated with the HbA1c level (r=-0.663, P=0.000). (5) the temporary glucose increased in normal rats induced by glucagon injection, resulting in the slow wave of the small intestine. (6) after injection of glucagon, the normal rat vagus activity decreased and the sympathetic vagus balance index increased. (7) after the injection of glucagon, the increase of blood glucose was negatively correlated with the regularity of the slow wave of the small intestine (r=-0.739, P=0.015).2. The acute effect and mechanism of small bowel electrospiny on the regulation of blood glucose in type 2 diabetic rats (1) and S Group ham compared: (1) group IES-3ms significantly reduced pre OGTT 30min blood sugar (P0.001). (2) 60min~120min, IES-3ms and IES-0.3ms reduced blood sugar 16-20% (P0.05). (3) two ginseng array OGTT glucose AUC was no difference. (2) blood glucose level: neither group nor the difference in insulin sensitivity. (3) antagonist antagonist blocking the effect of hypoglycemic effect (P0.05) (4) IES increased 30min GLP-1 secretion and insulin secretion after sugar load (P0.05). (5) acute IES-3ms, accelerated intestinal transport (P=0.004), but did not change gastric emptying. (three) the chronic effect and mechanism of small intestinal electrical stimulation on the regulation of blood glucose in type 2 diabetic rats (1) glucose after sugar load: (1) the 4 weekend, IES only reduced 30min blood sugar (P) (0.05) (2) for the 8 week of treatment, IES significantly reduced 15min-120min blood glucose 20-30% (15min and 30min P0.02,60min, 90min and 120min P0.01). (3) 0min glucose decreased by 13% (P0.02) and 22% of blood glucose decreased (2). (sixth weekend, eighth weekend, seventh weekend). Weight loss 10% (P0.05), but no significant effect on appetite (P0.05). (4) HbA1c:IES significantly reduced HbA1c level 6% (P0.05), HbA1c changes were not related to weight loss (R~2=0.153, P0.05). (5) blood GLP-1 and insulin levels: 8 weeks of treatment at the end of the treatment, IES group empty and OGTT 30min. But there was no change in the area under the insulin curve (P0.05). (6) pancreas weight: the weight of the pancreas in group Sham was significantly lower than that in group WKY (P0.05). The weight of pancreas in group IES was not different from that in group WKY. (7) the form and function of pancreatic islet: in a certain range, chronic IES could raise the number of islet beta cells, restore the morphology and structure of the islets, and regulate the alpha and beta Cell ratio. Four, conclusion 1, spontaneous hyperglycemia and glucagon induced hyperglycemia all lead to the disturbance of small intestinal myoelectric activity. The impairment of autonomic nervous function may be involved in high glucose induced intestinal dysregulation of.2, and acute IES: can reduce glucose after glucose load in type 2 diabetic rats. Its hypoglycemic effect may be mediated by GLP-1. Both intestinal motility and autonomic nerve regulation are involved in the role of IES in.3. Chronic IES: can reduce postprandial and fasting blood glucose, and its hypoglycemic effect may improve the function of islet beta cells by regulating the secretion of GLP-1.
【学位授予单位】:南京医科大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:R587.1
【相似文献】
相关期刊论文 前10条
1 屠昕;;2型糖尿病住院患者血糖漏测原因分析与对策[J];护理学报;2012年10期
2 王晓东;彭宙;陆云江;敖洪萍;;2型糖尿病患者进行动态血糖监测的临床研究[J];内蒙古中医药;2013年06期
3 潘全民;;老年2型糖尿病患者步行前后血糖变化分析[J];东南国防医药;2013年05期
4 王午喜;;如何满意控制血糖[J];家庭医药;2010年07期
5 张琪;;血糖监测十大技巧[J];糖尿病新世界;2011年05期
6 刘新;;我测血糖测上瘾[J];糖尿病新世界;2011年09期
7 ;血糖监测不要掉进误区[J];医药与保健;2012年01期
8 韦祟焕,李彩霞,李云霞;25例急性一氧化碳中毒患者血糖变化观察[J];甘肃科技;2000年03期
9 骆雪萍;危重患者血糖水平的变化及其临床意义[J];中原医刊;2000年05期
10 陈大尧,秦文喜;饮酒对血糖影响的分析[J];医学文选;2000年03期
相关会议论文 前10条
1 王志强;;20例糖尿病患者连续动态血糖监测观察[A];第九次全国中医糖尿病学术大会论文汇编[C];2006年
2 李全忠;;血糖监测的意义[A];河南省护理学会糖尿病及腹膜透析护理新进展学术交流研讨班资料汇编[C];2007年
3 包玉倩;;动态血糖监测的临床应用拓展[A];中华医学会第十次全国内分泌学学术会议论文汇编[C];2011年
4 巩纯秀;米杰;曹冰燕;;北京地区儿童青少年血糖分布特征[A];2008内分泌代谢性疾病系列研讨会暨中青年英文论坛论文汇编[C];2008年
5 徐扬;周健;姚海军;陆蔚;奚才华;孙一睿;王尔松;刘永;田恒力;贾伟平;胡锦;;神经外科重症患者的动态血糖监测[A];中国医师协会神经外科医师分会第四届全国代表大会论文汇编[C];2009年
6 张磊;周健;陆蔚;包玉倩;贾伟平;;动态血糖监测报告管理系统的建立与应用[A];中华医学会糖尿病学分会第十六次全国学术会议论文集[C];2012年
7 李德霞;;正常健康人动态血糖监测临床研究[A];2011年河南省糖尿病护理管理与教育暨学术交流会论文集[C];2011年
8 王玉萍;金明;;血糖监测表的设计与临床应用[A];全国第6届糖尿病护理学术交流暨专题讲座会议、全国第6届血液净化护理学术交流暨专题讲座会议论文汇编[C];2008年
9 梁茜;武美荣;;33例使用动态血糖监测患者的护理[A];2012中国中西医结合学会急救医学专业委员会学术年会论文集[C];2012年
10 黄一鑫;于雪梅;冯萍;金慧英;;早餐膳食成分的改变对2型糖尿病血糖的影响[A];2008年浙江省内分泌学学术会议论文汇编[C];2008年
相关重要报纸文章 前10条
1 四川大学华西医院内分泌科主任 田浩明;“糖娃”开学后血糖易波动[N];健康时报;2007年
2 何冬;如何把握测血糖的频率[N];医药养生保健报;2007年
3 上海交通大学医学院附属第九人民医院内分泌科主任 陆颖理;测血糖测够五个“点”[N];健康时报;2008年
4 山东省济南医院糖尿病诊疗中心副主任医师 王建华;撩开“动态血糖监测”的面纱[N];医药经济报;2011年
5 董飞侠;掌握三点控制血糖[N];大众科技报;2005年
6 程守勤;合理运动有助控制血糖[N];家庭医生报;2008年
7 曾理;血糖不稳,最好不要蒸桑拿[N];健康时报;2007年
8 中日友好医院内分泌科 邢小燕;血糖监测要“点”“线”结合[N];健康时报;2008年
9 郑帆影;青春期要严控血糖[N];健康时报;2006年
10 北京大学人民医院教授 纪立农 上海交通大学医学院瑞金医院教授 宁光;加强我国医院内血糖管理须软硬兼施[N];健康报;2009年
相关博士学位论文 前4条
1 汪新良;急诊常见临床指标在急性心力衰竭分型诊断和预后中的作用探讨[D];南方医科大学;2015年
2 袁甲翔;严格血糖控制对胃切除术后肠内营养的糖尿病患者的影响及其机制的探讨[D];郑州大学;2016年
3 欧阳晓俊;高血糖导致小肠电节律紊乱及小肠电刺激对2型糖尿病血糖调控的研究[D];南京医科大学;2015年
4 夏城东;血糖相关因素对血管内皮功能的影响及川芎嗪的干预研究[D];中国中医科学院;2009年
相关硕士学位论文 前10条
1 卓俊骐;用于实验动物的植入式血糖测量系统的研究[D];北京协和医学院;2015年
2 安邦;基于最小二乘法AR模型在血糖预测中的研究[D];郑州大学;2015年
3 成巍;冠心病患者血浆同型半胱氨酸与血糖的相关性临床研究[D];山西医科大学;2015年
4 王攀;甲状腺功能亢进症患者24小时动态血糖谱特点分析[D];山西医科大学;2015年
5 宁黄江;基于经济博弈的双激素血糖控制[D];北京化工大学;2015年
6 雷星;胃大部切除术对2型糖尿病患者血糖的影响[D];延安大学;2015年
7 钱凤文;OSAHS对高血压患者血压与血糖的影响[D];天津医科大学;2015年
8 冉旭;重症手足口病患儿的血糖监测及其对预后评价的意义研究[D];青岛大学;2015年
9 邹富利;脓毒症患儿血糖的临床研究[D];重庆医科大学;2015年
10 喻成侠;面向人工胰脏的快速建模方法与血糖预测研究[D];浙江大学;2016年
,本文编号:2169438
本文链接:https://www.wllwen.com/yixuelunwen/nfm/2169438.html