高脂环境下miR-29c-3p靶向调节Dvl2对BMSCs成骨分化机制研究
[Abstract]:Background: Hyperlipemia is an important risk factor for the occurrence and development of atherosclerosis, osteoporosis, hypertension, coronary heart disease, and stroke. It is one of the most frequent diseases that affect the health of the people. The results show that the hyperlipoidemia has an adverse effect on bone metabolism, bone mineralization, bone mineral density and other bone metabolism, and it is one of the risk factors for osteoporosis. Bone marrow mesenchymal stem cells (BMSCs) play a critical role in the directional differentiation of bone marrow mesenchymal stem cells (BMSCs) into the osteoblast-oriented differentiation. In recent years, a large number of studies have shown that microRNAs (microRNAs, miRNAs) play an important biological function in the differentiation of osteogenesis, such as maintaining a balance of bone metabolism. In the early stage of the research group, the rats with high-fat diet were proved to be loose, the bone trabecula is sparse and the arrangement is disordered; the percentage of Ca/ P atoms in the peripheral Ca/ P atoms in the rat implant fed by the high-fat feed is lower than that of the normal feed-fed rats; and the fluorescence quantitative PCR and the Western blot result show that the Dvl2 gene, The expression of the Dvl2 protein is inhibited, indicating that the hyperlipidemia can interfere with the early bone combination of the hyperlipidemic rat implant to a certain extent. The role of Dvl2 in the Wnt/ HCO3-cattenin signal pathway in patients with hyperlipidemia is worth exploring. The Wnt signaling pathway and miRNAs have a large number of cross-signal molecules, and the action target and the specific action mechanism of the Wnt signal pathway are worth exploring deeply. Objective: (1) To observe the expression of Runx2, ALP, SP7, PPAR-1, Dvl2 and targeted regulation of Dvl2-related microRNAs in rat bone marrow stromal stem cells (BMSCs) in high-fat environment. And (2) screening and identifying the microRNAs targeting the Dvl2 by using the target gene prediction software and the double-luciferase reporter gene. (3) To investigate the effect of microRNAs targeting regulation of Dvl2 on the osteogenic differentiation of BMSCs. Methods: (1) The rat bone marrow-derived mesenchymal stem cells were collected and cultured, and the flow cytometry was carried out in the third generation. After 28 days of formation of the bone marrow-derived mesenchymal stem cells, the bone marrow-derived mesenchymal stem cells were cultured for 28 days, respectively, and stained with red and red O-red O, and the osteogenic differentiation ability was observed, and BMSCs were identified for subsequent experiments. The osteogenesis and differentiation of BMSCs were observed with high-fat medium and normal medium for 28 days, and the osteogenic differentiation was observed in 3,5,7,14 and 21 days by RT-PCR, and the expression of Dvl2, ALP, SP7, lipoid-related gene PPAR-1 and Wnt in Wnt signaling pathway was detected by RT-PCR. The expression of miR-21-5p, miR-29c-3p, miR-138-5p, and miR-351-5pmRNA associated with targeted regulation of Dvl2. (2) The target gene prediction software, Target Scan, MicroRNA.org, miRDB, Microcosm Targets and other four miRNA database on-line analysis software is used for bioinformatics prediction and the literature query to obtain the miRNAs that can function with the Dvl2 gene 3 'UTR region as the miR-21-5p, the miR-29c-3p, the miR-138-5p, and the miR-351-5p. The transfection efficiency and the cell proliferation of CCK8 were detected by transfecting the FAM-siRNA with different concentration (10 nm,30 nm,50 nm,100 nm) in vitro. Transfection of miR-21-5p, miR-29c-3p, miR-138-5p, miR-351-5p and the inhibitor in vitro with the screening concentration, the transfection efficiency was detected by RT-PCR after 48 h, the overexpression and low expression of Dvl2 were achieved, and the expression of Dvl2 in BMSCs was detected by Western blot, and the most obvious miRNAs were found. The plasmid vector of the two-luciferase reporter gene was constructed, and the 293T cells were co-transferred with the plasmid vector by the miRNAs-21-5p, the miR-29c-3p, the miR-138-5p, and the miR-351-5p, and the activity of the luciferase was detected by the multi-function microplate reader to verify the targeting and control effects of miRNAs and Dvl2. (3) The expression of bone-related gene Runx2 and ALP was detected by Western blot. Results: (1) The results of flow cytometry showed that the ratio of CD44 positive cells in third generation BMSCs was 96.7%, the ratio of CD45 positive cells was 2.8%, and the ratio of CD90 positive cells was 95.9%. The surface marker antigen of the mesenchymal stem cells is positive, and the cell is BMSCs, and the purity is high. The results showed that BMSCs had the ability to differentiate into the direction of osteogenesis. The results of RT-PCR showed that the expression of Runx2, SP7 and ALPmRNA in the high-fat group was lower than that in the control group, and the expression of PPAR-mRNA in the high-fat group was higher than that of the control group. The difference was significant (P0.05). The miR-21-5p, miR-29c-3p high-fat group and the control group were decreased, and the expression of miR-138-5 pmRNA in the 3,5,7 and 14 days was not significantly different from that in the high-fat group, and the expression of miR-138-5 pmRNA in the control group was significantly higher than that of the control group at 21 days (P0.05). At 3,5 and 7 days, the expression of miR-351-5pmRNA in the control group was not significantly different from that of the high-fat group, and the expression of miR-351-5pmRNA in the control group was lower than that of the control group at 14 and 21 days, and the difference was significant. (2) The higher the observation concentration of the fluorescence microscope, the higher the efficiency of the transfection, the higher the concentration of the CCK8, the higher the proliferation of the cells. The real-time PCR results showed that the expression of the miR-21-5p, the miR-29c-3p, the miR-138-5p, and the miR-351-5p increased by 5-6 times,4-fold,1000-fold and 800-fold, respectively, as compared to the control group. Compared with the control group, the expression was about 3-fold,10-fold,10-fold and 5-fold, respectively. The expression of Dvl2 in miR-21-5p, miR-29c-3p, miR-138-5p, miR-351-5p, miR-138-5p, miR-351-5p was reduced after transfection of miR-21-5p and miR-29c-3p misitics, and the expression of Dvl2 was increased compared to the mimics nc group after the transfection of miR-138-5p and miR-351-5p mmics. The expression of Dvl2 in miR-21-5p, miR-29c-3p, miR-138-5p, and miR-351-5p inhimitor was increased in different degrees after transfection. The results of Western blot showed that the expression of Dvl2 was the most obvious after the transfection of the cells with miR-29c-3pmomics/ inhitor. (3) The results of Western blot show that the level of protein expression of both Runx2 and ALP after transfection of miR-29c-3p mmics is significantly higher than that of the mimics NC group. Conclusion: (1) In high-fat environment, BMSCs differentiated into osteoblasts, miR-21-5p, miR-29c-3p, miR-138-5p, and miR-351-5p participate in the control of the biological activity of bone metabolism and osteoblast in high-fat environment. (2) The miRNAs targeted to the regulation of Dvl2 are miR-29c-3p, and miR-21-5p, miR-138-5p, and miR-351-5p are weak in negative regulation of Dvl2. (3) miR-29c-3p indirectly promotes the differentiation and mineralization of BMSCs by targeting and regulating Dvl2.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R589.2;R580
【相似文献】
相关期刊论文 前10条
1 卞泗善;肖毅;徐展望;;骨髓间充质干细胞成骨分化的研究进展[J];内蒙古中医药;2013年31期
2 王运涛;骨髓间充质干细胞成骨分化调控的研究进展[J];国外医学(生物医学工程分册);2003年01期
3 井燕;李良;李毅;陈孟诗;吴文超;陈槐卿;刘小菁;;力学应变对大鼠骨髓间充质干细胞增殖和成骨分化能力的影响[J];生物医学工程学杂志;2006年03期
4 崔向荣;苏伟;黄钊;覃万安;;电磁场促进骨髓间充质干细胞成骨分化的研究进展[J];中国医学物理学杂志;2011年04期
5 彭飞;郑亚东;徐西强;虞冀哲;吴华;;620nm低能量红光对骨髓间充质干细胞成骨分化的影响[J];激光生物学报;2011年03期
6 赵领洲;刘丽;吴织芬;;微米坑/纳米管氧化钛形貌对骨髓间充质干细胞成骨分化的作用[J];医学争鸣;2012年04期
7 杨姣;夏雷;汤郁;陆化;费小明;;肿瘤坏死因子预处理促进骨髓间充质干细胞成骨分化潜能[J];南京医科大学学报(自然科学版);2014年03期
8 王晶;张洹;;-80℃一步法冻存对成人骨髓间充质干细胞成骨分化能力的影响[J];广东医学;2007年03期
9 陈翠平;罗新;;17β-雌二醇对大鼠骨髓间充质干细胞成骨分化的作用[J];中国骨质疏松杂志;2007年05期
10 ;骨髓间充质干细胞的成骨分化[J];中国组织工程研究与临床康复;2010年10期
相关会议论文 前10条
1 郑亮;郑雅元;崔燎;刘钰瑜;;四羟基二苯乙烯-2-O-β-D-葡萄糖苷对大鼠骨髓间充质干细胞成骨分化的作用及机制研究[A];中华医学会第七次全国骨质疏松和骨矿盐疾病学术会议论文汇编[C];2013年
2 吴江;陈槐卿;K-LP.SUNG;;钛颗粒负荷影响骨髓间充质干细胞成骨分化能力的机理[A];全国首届青年复合材料学术交流会论文集[C];2007年
3 吴江;陈槐卿;李良;尹光福;K-L P.SUNG;;钛颗粒负荷影响骨髓间充质干细胞成骨分化能力的机理[A];中国复合材料学术研讨会论文集[C];2005年
4 陈海啸;洪盾;万晓晨;李继承;;肠毒素C联合维生素C对骨髓间充质干细胞成骨分化的影响研究[A];2008年浙江省骨科学学术年会论文汇编[C];2008年
5 袁风红;邹耀红;高恺言;俞可佳;;地塞米松对体外人骨髓基质细胞增殖及成骨分化的影响[A];全国自身免疫性疾病专题研讨会暨第十一次全国风湿病学学术年会论文汇编[C];2006年
6 宋忠臣;束蓉;董家辰;李松;;低氧对牙周膜成纤维细胞增殖和成骨分化的影响[A];第十次全国牙周病学学术会议论文摘要汇编[C];2014年
7 董家辰;束蓉;宋忠臣;;炎症微环境对人牙周膜成纤维细胞增殖与成骨分化的影响[A];第十次全国牙周病学学术会议论文摘要汇编[C];2014年
8 孙楠;杨力;张振;张桦;陈宏;蔡德鸿;;晚期氧化蛋白产物对大鼠骨髓间充质干细胞增殖及向成骨分化的影响[A];中华医学会第十二次全国内分泌学学术会议论文汇编[C];2013年
9 马雪;孟静茹;贾敏;王宁;胡静;周颖;罗晓星;;胰高血糖素样肽-1类似物对大鼠骨髓间充质干细胞增殖与成骨分化的影响[A];第十一届全国青年药学工作者最新科研成果交流会论文集[C];2012年
10 林和敏;;成骨分化的人脐血间充质干细胞免疫原性研究[A];2013年全国激光医学学术联合会议暨2013年浙江省医学会整形美容学术年会论文汇编[C];2013年
相关博士学位论文 前10条
1 龚逸明;microRNAs调控Satb2介导的骨髓基质干细胞成骨分化的作用研究[D];复旦大学;2014年
2 李松涛;EphB信号在轴向仿生压应力调控MSC成骨分化中的作用和机制研究[D];第三军医大学;2015年
3 方文;纯钛表面WNT信号通路调控BMSCs成骨分化的机制研究[D];浙江大学;2014年
4 刘世宇;移植外源性MSCs持久恢复宿主MSCs功能的机制研究[D];第四军医大学;2015年
5 张莉;Fgfr2~(S252W/+)小鼠骨量、骨结构特性及BMSCs成骨分化调控机制的研究[D];第三军医大学;2015年
6 刘旭杰;材料性质调控干细胞成骨分化及壳聚糖基骨修复材料[D];清华大学;2015年
7 文采;多孔矿化水凝胶材料诱导人胚胎干细胞成骨分化的研究[D];东南大学;2015年
8 吴毛;胸腰段椎体骨折形态与椎管狭窄相关性研究及Sclerostin对成骨分化的影响[D];苏州大学;2016年
9 黄江;激活HIF-1α对骨折愈合的影响及诱导miR-429对MC3T3-E1细胞成骨分化的作用机制[D];首都医科大学;2016年
10 侯秋科;龟板有效成分促间充质干细胞成骨分化的miRNA-VDR网络机制[D];广州中医药大学;2016年
相关硕士学位论文 前10条
1 吴小莹;脑源性神经营养因子对人脂肪干细胞增殖与成骨分化的作用[D];北京协和医学院;2015年
2 秦子顺;淫羊藿苷对人牙周膜干细胞的增殖和成骨分化的影响[D];兰州大学;2015年
3 刘可;miR-106bE靶向调控BMP2参与间充质干细胞成骨分化与体内骨形成[D];苏州大学;2015年
4 付雪杰;MSCs与去分化MSCs在成骨分化过程中免疫原性上调的研究[D];苏州大学;2015年
5 崔阳阳;蛋白激酶C在小鼠骨髓间充质干细胞成骨分化中的作用研究[D];新乡医学院;2015年
6 严一杰;体外诱导人肾间质成纤维细胞成骨分化的实验研究[D];广西医科大学;2015年
7 高羽萱;直流微电场对种植体周骨髓间充质干细胞迁移和成骨影响的研究[D];中国人民解放军医学院;2015年
8 郭中豪;甲状旁腺激素对大鼠骨髓间充质干细胞成骨分化的影响[D];山西医科大学;2015年
9 李慧垠;高脂环境下大鼠BMSCs成骨分化过程中Wnt通路相关因子的表达变化[D];山东大学;2015年
10 聂晓萌;MicroRNA靶向Id1对BMSCs成骨分化的影响[D];山东大学;2015年
,本文编号:2507960
本文链接:https://www.wllwen.com/yixuelunwen/nfm/2507960.html