皮肤光老化过程中mtDNA突变及氧化应激改变研究
[Abstract]:The process of skin aging caused by exogenous factors (mainly ultraviolet rays in sunlight, including long-wave ultraviolet and medium-wave ultraviolet rays) is called photoaging, which is different from natural aging. With the destruction of the global ozone layer and the increase of ultraviolet radiation, photoaging appears a general trend, and the incidence of skin tumors increases year by year. The high growth rate of skin tumors is closely related to the global epidemic of photoaging. Important events, including reactive oxygen species (ROS) and oxidative stress markers (8-O-guanosine, isoprostane, nitro, etc., can occur in turn after exposure to a certain cumulative dose of ultraviolet radiation. Increased levels of tyrosine, nuclear chromosome breakage, and mitochondrial DNA (mtDNA) mutations trigger skin damage, aging, pathological changes and even canceration. The main consequence of photoaging is to induce skin malignancies (such as malignant melanoma, basal cell carcinoma, etc.). How to cut off the occurrence and development of photoaging It has become one of the research hotspots in related fields to effectively prevent and treat the initial stage of sunlight-related skin malignancies.
Previous studies on skin photoaging have focused on the fields of histopathology, ultrastructure and biochemical characteristics, revealing the role of some genes related to growth and differentiation (e.g. c-myc, c-fos, EGFR, etc.) in the process of skin photoaging; however, there are few studies on the effect of mtDNA mutation on skin photoaging. 1. Extranuclear genetic material is susceptible to oxidative stress, metabolic changes and other exogenous factors. It mutates and accumulates gradually, eventually leading to a series of degenerative diseases and premature aging symptoms. The accumulation of mtDNA mutations is an intermediate link between oxidative stress and abnormal cell apoptosis. Although the relationship between mtDNA mutations and skin aging has been revealed to some extent, the molecular biological mechanism of mtDNA mutations leading to photoaging has not yet been elucidated.
In order to explore the molecular mechanism of skin photoaging induced by mtDNA mutation, the following studies were carried out: First, real-time fluorescence quantitative polymerase chain reaction (PCR) was used to detect two important mtDNA large fragment deletion mutations (4,977 BP deletion, also known as common deletion and 3,895 BP deletion) levels in different exposure sites of skin. Then stress-induced premature senescence (SIPS) was induced by repeated subtoxic dose of Ultraviolet B (UVB) in cultured skin cells, and two mtDNA deletion mutations were observed in SIPS skin cells induced by UVB. On this basis, the protective effect of isoflavones on SIPS skin cells and its mechanism were observed. The results of this study will be helpful for further clinical and basic research on photoaging.
Detection of mtDNA large fragment deletion in 1 skin photoaging sites
Genomic DNA was extracted from 71 human skin tissues of different ages, 31 exposed sites (neck, back of hand or forehead), 40 unexposed sites (buttocks, thighs or waist and abdomen), and 4,977 BP large deletion of mtDNA (large deletion of 4,977 BP of mtDNA, mtDNA ~ (4977)) and 3,895 BP large deletion were detected. The mutations of 3,895 BP of mtDNA and mtDNA ~ (3895) were amplified and the levels of two large deletion mutations were detected by real-time quantitative PCR. The results showed that the incidence of mtDNA ~ (4977) and mtDNA ~ (3895) increased with age. The incidence of mtDNA ~ (4977) and mtDNA ~ (3895) in people aged 40 was significantly higher than those aged 40. The relative copies of mtDNA ~ (4977) and mtDNA ~ (3895) were positively correlated with age at exposed and non-exposed sites, and the cumulative levels of mtDNA ~ (3895) were significantly different between exposed and non-exposed sites. The occurrence of mtDNA ~ (3895) is closely related to ultraviolet radiation, which may be the response of mtDNA to a certain cumulative dose of ultraviolet radiation damage and play a role in the process of skin photoaging.
Model construction of 2 UVB inducing human skin cells to enter SIPS state
Human dermal fibroblast (HDF) and human epidermal keratinocyte of adult (HEKa) were irradiated by UVB at low doses for several times. When the radiation dose accumulated to 300 mJ/cm~2 and 360 mJ/cm~2 respectively, senescence-associated beta-galactosidase (SA-beta-Ga-Ga) was observed. L) The results of chemical staining were strongly positive, suggesting that the cells were induced into senescence; the apoptosis rate of the two kinds of skin cells was significantly increased by flow cytometry (FACS), and most of the cells were blocked in G0/G1 phase; enzyme-linked immunosorbent assay (ELISA) found that the cells were superoxide. Superoxide dismutase (SOD) activity decreased significantly, malondialdehyde (MDA) content increased significantly. The results showed that human skin cells repeat subtoxic dose of UVB and enter SIPS state after repeated radiation. It can be used as an in vitro study model of photodamage and photoaging biology.
Detection of mtDNA large fragment deletion mutation in 3 SIPS skin cells
UVB subtoxic dose, repeated exposure to HDF and HEKa, induced them into SIPS state, extracted genomic DNA, detected the occurrence frequency of mtDNA ~ (4977) and mtDNA ~ (3895) by ordinary PCR, and detected the mutation level by real-time fluorescence quantitative PCR. The occurrence frequency and expression level of mtDNA ~ (4977) and mtDNA ~ (3895) in the two cell lines increased with the dose of UVB irradiation. The occurrence frequency and mutation level of mtDNA ~ (3895) were more sensitive than that of mtDNA ~ (4977) to reflect the cumulative UVB radiation. New biological indicators.
Protective effects of 4 isoflavones on UVB induced HDF entry into SIPS
HDF was pretreated with isoflavones at concentrations of 0,10,20,40 and 80 micromol/L respectively, and then subjected to cumulative dose of 300 mJ/cm~2 UVB radiation. The protective effects of isoflavones on SIPS were evaluated by measuring the phenotypic parameters related to SIPS. Isoflavones at higher doses (80 micromol/L) can reduce the levels of DeltamtDNA ~ (4977) and delta mtDNA ~ (3895) and inhibit an important redox protein p66Shc (66-kilodalton isoform of the growth factor adapter Shc. Growth factor ligand Shc's 66KD isoprotein and its downstream signal protein FKHRL1 (forkhead homolog like 1, forkhead like 1) are activated, suggesting that it may play an antagonistic role in antioxidant stress by down-regulating mitochondrial signaling pathway, thereby protecting HDF from entering SIPS.
conclusion
1. mtDNA ~ (4977) is related to natural aging and is an indicator of skin natural aging, while mtDNA ~ (3895) is closely related to ultraviolet radiation, which can be regarded as one of the new biological monitoring indicators of skin photodamage.
2. HDF and HEKa can be used as one of the in vitro models for photoaging photobiology research after they are induced into SIPS state by repeated irradiation at low doses of UVB with cumulative radiation dose of 300 mJ/cm~2 and 360 mJ/cm~2.
3. Isoflavones can protect HDF from SIPS induced by UVB in a dose-dependent manner by down-regulation of p66Shc-mitochondrial signaling-oxidative stress signaling pathway.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2010
【分类号】:R751
【相似文献】
相关期刊论文 前10条
1 陈刚;陈斌;吕中明;施伟庆;冀琛;李燃;闫宁;张银娣;;黄芪甲苷乳膏对小鼠光老化皮肤的保护作用[J];江苏医药;2010年11期
2 Kligman L H;汤爱民;;光老化:临床表观、预防和治疗[J];国际皮肤性病学杂志;1987年06期
3 邓向东;李世荣;曹川;李晓格;;强脉冲光治疗面部皮肤光老化65例[J];中国美容医学;2006年07期
4 石钰;蒋献;李利;;皱纹与皮肤光老化[J];国际皮肤性病学杂志;2006年03期
5 张秀英;何焱玲;董洁;徐俊珠;王婕;何京晶;;Quantum SR和Lumenis One强脉冲光治疗面部皮肤光老化210例疗效观察[J];中国激光医学杂志;2008年03期
6 李健;朱石江;;皮肤老化[J];中国美容整形外科杂志;2008年02期
7 郭鲁义;李春雨;张宁;杨智荣;;实用光老化动物模型建立方法的探讨[J];中国美容医学;2008年02期
8 李华;叶(目亭)杰;李伯勤;应馨萍;;虫草多糖对8-MOP/UVA诱导皮肤成纤维细胞光老化的拮抗作用[J];时珍国医国药;2009年05期
9 林彤;龚向东;黄玉清;;激光美容门诊就诊者对光老化认知的问卷调查[J];中国美容医学;2011年05期
10 张琳西,王臻,郭树忠,夏炜,李巍;中波紫外线对体外培养的人黑色素细胞的影响[J];中国美容医学;2001年03期
相关会议论文 前10条
1 林彤;龚向东;;皮肤激光美容门诊就诊者光老化认知的问卷调查[A];2011全国中西医结合皮肤性病学术会议论文汇编[C];2011年
2 苏跃;徐丽敏;;光老化的中医药防治研究进展[A];2011全国中西医结合皮肤性病学术会议论文汇编[C];2011年
3 骆丹;吴迪;曹妍;许阳;周炳荣;闵伟;;IPL改善慢性UVA所致光老化模型鼠皮肤的观察研究[A];中华医学会第十五次全国皮肤性病学术会议论文集[C];2009年
4 黄进华;;光老化研究[A];美丽人生 和谐世界——中华医学会第七次全国医学美学与美容学术年会、中华医学会医学美学与美容学分会20周年庆典暨第三届两岸四地美容医学学术论坛论文汇编[C];2010年
5 严淑贤;周希;卢忠;钱辉;丁蕙琳;;光动力学疗法治疗面部光老化的自身双侧对照研究[A];中华医学会第十五次全国皮肤性病学术会议论文集[C];2009年
6 宋为民;周梦云;韩长元;潘虹;樊奇敏;许爱娥;;紫外线对小型猪皮肤的影响以及积雪苷对紫外线所致光老化防护作用的研究[A];2010全国中西医结合皮肤性病学术会议论文汇编[C];2010年
7 林彤;;红外线和光老化的研究进展[A];中华医学会第十五次全国皮肤性病学术会议论文集[C];2009年
8 刘彤云;何黎;;皮肤光老化机制研究进展[A];2009全国中西医结合皮肤性病学术会议论文汇编[C];2009年
9 严淑贤;项蕾红;;光动力光子疗法治疗面部光老化的自身双侧对照研究[A];中华医学会第16次全国皮肤性病学术年会摘要集[C];2010年
10 杨珊;普雄明;;E光联合激光治疗面部光老化疗效观察[A];中华医学会第16次全国皮肤性病学术年会摘要集[C];2010年
相关重要报纸文章 前10条
1 采写 本报记者 叶芳 通讯员 伍晓毅 受访专家 广州医学院第二附属医院皮肤科主任 杨健;颜老色衰多因“光老化”[N];广东科技报;2008年
2 沈杰;三招防紫外线引起皮肤老化[N];医药养生保健报;2006年
3 杨立江 宋春荣;PVC塑料异型材的变色[N];中国建材报;2007年
4 杨丽佳 张群;皮肤光损伤机理和防治研究获科技奖[N];健康报;2006年
5 本报记者 蔡琳邋李月清 周一兵;鸟巢座椅的高科技和中国烙印[N];中国石化报;2008年
6 天津医科大学总医院化妆皮炎研究室 刘全忠 亓玉青 李燕;对美容别过分期待[N];健康报;2008年
7 蒋秀娟;如何正确对待抗衰老化妆品?[N];科技日报;2008年
8 保健时报实习记者 李莹;冬日阳光催人老?[N];保健时报;2007年
9 刘伊婷;透过标识 看功效[N];中国质量报;2007年
10 吴艳;尖端科技成就美丽[N];中国服饰报;2006年
相关博士学位论文 前10条
1 王懿娜;皮肤光老化过程中mtDNA突变及氧化应激改变研究[D];浙江大学;2010年
2 刘仲荣;8-MOP/UVA对人类皮肤光老化形成的影响及芳维A酸乙酯拮抗作用研究[D];第三军医大学;2001年
3 朱彦君;酚—巴豆油对皮肤光老化疾病的治疗及其分子机制的初步研究[D];中国人民解放军军事医学科学院;2004年
4 刘海英;斑点叉尾洶(Channel catfish)鱼皮胶原蛋白及胶原蛋白多肽的研究[D];江南大学;2007年
5 张青松;自噬与人皮肤成纤维细胞光损伤及光老化关系的研究[D];中国协和医科大学;2008年
6 严淑贤;紫外线照射对真皮结构和代谢的影响及氮氧化物Tempol保护作用的研究[D];复旦大学;2005年
7 康玉英;炎症浸润细胞及基质金属蛋白酶参与光老化发生机制研究[D];中国协和医科大学;2009年
8 庄永亮;海蜇胶原蛋白理化性质及其胶原肽的护肤活性研究[D];中国海洋大学;2009年
9 单士军;苡仁提取物对中波紫外线照射后HaCaT细胞水通道蛋白3表达的调节及意义[D];中国医科大学;2009年
10 王明利;强脉冲光对大鼠皮肤胶原蛋白及其调控因素的影响[D];第四军医大学;2005年
相关硕士学位论文 前10条
1 李文静;人表皮光老化的蛋白质组学研究[D];重庆医科大学;2010年
2 龙亭;人表皮光老化相关蛋白的比较蛋白质组学研究[D];重庆医科大学;2010年
3 曹先宇;光子嫩肤仪部分核心技术及实验研究[D];电子科技大学;2004年
4 张殿波;丝绸文物上植物染料的模拟光老化研究[D];浙江理工大学;2011年
5 王利锋;强脉冲光治疗面部光老化的临床研究[D];首都医科大学;2010年
6 曹鹏利;扇贝多肽对长期紫外线辐射豚鼠皮肤光老化的保护作用研究[D];青岛大学;2003年
7 王诗晗;黄芪抗皮肤光老化的研究[D];辽宁中医学院;2004年
8 于海洋;脂溢性角化病皮损下方真皮中MMP-1,2,3的表达及其与光老化的关系[D];山东大学;2008年
9 颜薇;应用基因芯片技术对国人皮肤光老化基因差异表达的研究[D];中国协和医科大学;2008年
10 李春雨;玉屏风散对老化皮肤免疫功能影响的实验研究[D];黑龙江中医药大学;2009年
,本文编号:2219916
本文链接:https://www.wllwen.com/yixuelunwen/pifb/2219916.html