基于颅内脑电信号相关性和相位同步的癫痫发作预测研究
发布时间:2018-05-14 17:40
本文选题:同步性 + 相关性 ; 参考:《杭州电子科技大学》2015年硕士论文
【摘要】:癫痫是一种很常见的神经系统疾病,由大脑神经元过度同步放电所致。全世界预计超过5000万人患有癫痫病,其反复性、猝发性导致患者心智障碍、意外事故、突然死亡等发生,严重危害患者身心健康。如能在癫痫发作前预测到即将到来的癫痫发作,即便时间很短,,也有可能使我们对癫痫进行一定的干预治疗,使得癫痫发作造成伤害大大缓解。 研究表明,癫痫发作是一个随时间渐变的过程,特别是发作前的先兆有一定的规律性,这使癫痫预测成为可能。目前,预测癫痫最常用的方法是分析患者的脑电信号,并应用某些统计学方法进行预测。脑电信号又可分为头皮脑电信号(EEG)和颅内脑电信号(iEEG),相比于EEG信号,iEEG信号不易受伪迹和环境噪声的影响,利用iEEG信号进行癫痫预测获得了广泛关注。 在本研究中,我们采用植入患者颅内的微电极所采集的颅内脑电信号(MiE)作为癫痫预测数据。这是因为微电极比宏电极更贴近于神经元,并且对于神经元的活动变化要比宏电极更敏感。基于微电极的颅内脑电信号采集器,必然在揭示癫痫的发病机制上要比基于宏电极的颅内脑电信号采集器更具有优势。 本文研究了在癫痫发作前,基于微电极的颅内脑电信号在四个频段的相关性和相位的同步问题,这四个频段为:(1-30HZ)、(30-80HZ)、链波(80-250HZ)以及快速链波(250HZ)。研究发现,癫痫发作前,波和链波频段的相关性和相位同步具有递增趋势,其过程持续时间从几秒钟到几分钟不等。这一发现与目前基于宏电极的脑电信号研究所公认的癫痫发作前同步性降低的结果相反。这一发现表明,临床宏电极所观察到的癫痫信号是由病灶周围大量神经元在癫痫发作时同步放电产生的,同时该结果也支持微观癫痫领域的渐进聚结假说。对早期微观癫痫的检测可为即将来临的癫痫发作实施干预治疗提供重要的依据。
[Abstract]:Epilepsy is a common neurological disease caused by excessive synchronous discharges of brain neurons. More than 50 million people around the world are expected to suffer from epilepsy, whose recurrence and sudden onset lead to mental disorders, accidents, sudden deaths, and so on, seriously endangering the physical and mental health of patients. If we can predict the coming epileptic seizure before the seizure, even if the time is very short, it is possible for us to intervene in the treatment of epilepsy, so that the injury caused by epileptic seizure can be greatly alleviated. It has been shown that epileptic seizures are a gradual process over time, especially the preictal precursors have certain regularity, which makes it possible to predict epilepsy. At present, the most commonly used method to predict epilepsy is to analyze the EEG of patients and use some statistical methods to predict epilepsy. EEG signals can be divided into scalp EEG signals and intracranial EEG signals. Compared with EEG signals, EEG signals are not easily affected by artifacts and environmental noise, and the use of iEEG signals to predict epilepsy has been paid more and more attention. In this study, we used intracranial electroencephalogram (EEG) collected from microelectrodes implanted into the patient's brain as epileptic prediction data. This is because microelectrodes are closer to neurons than macro electrodes and are more sensitive to changes in neuronal activity than macro electrodes. Intracranial EEG collector based on microelectrode must have more advantages in revealing the pathogenesis of epilepsy than that based on macro electrode. The correlation and phase synchronization of intracranial EEG signals based on microelectrode in the four frequency bands before seizure were studied in this paper. The four frequency bands are: 1-30 HZ, 30-80 HZ, 80-250 HZ) and 250 HZ fast wave. It is found that the correlation and phase synchronization of the wave and chain waves have an increasing trend before seizure and the duration of the process varies from a few seconds to a few minutes. This finding contradicts the results of the current macro-electrode-based electroencephalogram (EEG)-based reduction in preepileptic synchrony. The findings suggest that the epileptic signals observed by clinical macro electrodes are generated by the simultaneous discharge of a large number of neurons around the lesion during seizures, and the results also support the progressive aggregation hypothesis in the field of microepilepsy. The detection of early microscopic epilepsy can provide important basis for the intervention treatment of the coming seizure.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R742.1;TN911.7
【共引文献】
相关期刊论文 前10条
1 孔娜;贾文艳;马骏;高小榕;高上凯;;大鼠癫痫发作可预测性的研究[J];北京生物医学工程;2007年02期
2 欧阳取平;王玉平;;肌阵挛性癫痫26例临床分析[J];北京医学;2009年04期
3 李明爱;崔燕;杨金福;;脑电信号中眼电伪迹自动去除方法的研究[J];电子学报;2013年06期
4 耿虹;张佳;马俊兵;;塞来昔布在大鼠痫性发作中的作用及对大鼠认知功能的影响[J];包头医学院学报;2013年04期
5 闫立丽;张旭;陈雪清;傅新星;刘斌;钱柏霖;;基于ICA方法去除人工耳蜗ERP信号伪迹的研究[J];北京生物医学工程;2015年02期
6 赵建林;周卫东;刘凯;蔡冬梅;;基于SVM和小波分析的脑电信号分类方法[J];计算机应用与软件;2011年05期
7 刘成;何可人;周天彤;邹凌;;左右手运动想象脑电模式识别研究[J];常州大学学报(自然科学版);2013年01期
8 姜慧;周霆;;EEG信号动态演化过程的研究[J];计算机工程;2013年09期
9 杨昌健;邓赵红;蒋亦樟;王士同;;基于迁移学习的癫痫EEG信号自适应识别[J];计算机科学与探索;2014年03期
10 李志萍;;基于支持向量机的多通道癫痫发作预测[J];计算机工程;2014年02期
本文编号:1888857
本文链接:https://www.wllwen.com/yixuelunwen/shenjingyixue/1888857.html
最近更新
教材专著