脑缺血再灌注中TIGAR蛋白调控的分子机制
本文选题:TIGAR + 葡萄糖 ; 参考:《苏州大学》2015年硕士论文
【摘要】:目的:研究脑缺血再灌注损伤对TIGAR蛋白的调节及相应的分子机制。方法:采用小鼠短暂性大脑中动脉阻塞再灌注(transient middle cerebral artery occlusion/reperfusion,MCAO/R)模型和体外培养原代神经元缺糖缺氧再复糖复氧(oxygen glucose dripivation/reoxygenation,OGD/R)模型。使用Western blot法检测缺血后小鼠大脑皮层和原代皮层神经元中TIGAR和p53蛋白的表达;在缺血前0.5 h给予p53抑制剂pifithrin-alpha(PFT-α,30μM),Western blot法检测PFT-α对原代皮层神经元中TIGAR以及p53靶蛋白Bax表达的影响;构建p53慢病毒感染原代皮层神经元细胞敲除p53蛋白,检测细胞内TIGAR、p53、Bax蛋白的水平。使用强生血糖仪检测小鼠缺血前后的血糖水平,Western blo法检测胰岛素(insulin,1 U/kg)对小鼠缺血皮层区TIGAR表达的影响。小鼠尾静脉注射50%的葡萄糖溶液(500 g/kg),检测血糖水平和大脑皮层区TIGAR的表达。采用不同浓度的葡萄糖溶液(0-150μM)刺激HT22细胞2 h,Western blot法检测细胞内TIGAR的水平,CCK8检测细胞的活性以及在荧光显微镜下观察HT22细胞的形态。小鼠侧脑室注射肾上腺素(0.12mg/kg)、尾静脉注射氢化可的松(50,100,200,400 mg/kg)以及胰高血糖素(0.1,0.5,1,5,10 mg/kg),Western-blot法检测大脑皮层区TIGAR的水平;采用不同浓度的肾上腺素(0.1,1,10,50μM)、氢化可的松(0.01,0.1,1,10,100μM)、胰高血糖素(0.001,0.01,0.1,1,10μM)以及胰岛素(0.0625,0.125,0.25,0.5,1μM)刺激HT22细胞3 h,检测细胞内TIGAR的水平。体外培养原代皮层神经元细胞,采用过氧化氢(H2O2,10,30,90μM)共同培养(3,6,12 h)造氧化应激模型,CCK8检测细胞存活率,GSH/GSSG试剂盒检测细胞内的GSH水平,DHE探针标记检测细胞内ROS变化以及Western-blot法检测细胞内TIGAR的水平。提前4 h给予抗氧化剂NADPH(10μM),检测细胞内TIGAR和ROS的水平。使用Western blot法检测缺血后小鼠大脑皮层和原代皮层神经元中SP1蛋白的表达;在缺血前24 h给予SP1抑制剂MIT(mithramycin A,300 n M),Western blot法检测MIT对原代皮层神经元中TIGAR表达的影响;构建SP1慢病毒感染原代皮层神经元敲除SP1蛋白,检测细胞内TIGAR和SP1的蛋白水平。结果:小鼠脑缺血再灌注后,TIGAR水平明显升高,在3 h达到峰值(P0.001)。原代皮层神经元在OGD/R后,TIGAR和p53蛋白水平明显升高,分别在3 h和6 h达到峰值(P0.01,P0.001)。Western blot结果显示:使用p53抑制剂PFT-α后对缺血再灌注诱导的TIGAR的上升没有影响,但是能够明显抑制p53靶蛋白Bax的水平(P0.001)。构建的p53慢病毒能够显著抑制原代皮层神经元细胞中p53和Bax的蛋白水平,而对TIGAR的表达没有明显影响。小鼠脑缺血再灌注后,血糖水平明显上升,在0.5 h达到峰值(P0.001),使用胰岛素控制血糖水平后(P0.001),TIGAR的诱导表达被部分抑制了(P0.01)。给小鼠尾静脉注射50%的葡萄糖溶液,血糖水平明显上升,但是TIGAR的水平没有明显变化。体外培养海马神经元细胞系HT22细胞,加入葡萄糖继续培养2 h,对TIGAR的表达、细胞活力以及形态均未造成明显影响。HT22细胞在无糖预培养4 h后加入葡萄糖继续培养2 h,Western blot结果显示TIGAR的水平没有变化。在体内实验中,Western blot结果显示:肾上腺素能够明显诱导TIGAR蛋白(P0.001,P0.001,P0.001);3 h时氢化可的松能诱导TIGAR蛋白表达,且呈现剂量依赖性,50 mg/kg的氢化可的松在给药后1 h和2 h时明显激活TIGAR表达(P0.01,P0.01);0.5和1 mg/kg的胰高血糖素在给药后2 h时能够诱导TIGAR的表达(P0.05,P0.05)。体外实验中,HT22细胞加入激素后继续培养3 h,Western blot结果显示:1μM的肾上腺素、0.1μM的氢化可的松和1μM的胰高血糖素能够增加TIGAR的表达(P0.01,P0.001,P0.01),同时,低剂量的胰岛素在一定低浓度范围内抑制TIGAR蛋白的表达而高剂量的胰岛素能激活TIGAR(P0.01,P0.001)。培养原代皮层神经元细胞,加入H2O2继续培养造氧化应激模型,CCK-8、GSH、DHE和Western blot结果显示:30和90μM的H2O2有效抑制了神经元细胞的活力(P0.001,P0.001),降低了细胞内的GSH水平(P0.05,P0.001),增加了细胞内的ROS水平(P0.01,P0.01),同时在3 h时H2O2能够明显激活TIGAR的表达,且呈现剂量依赖性。提前4 h加入抗氧化剂NADPH,Western blot和DHE结果显示:NADPH能够部分抑制TIGAR的上调以及ROS的增加(P0.001,P0.05)。Western blot结果显示:脑缺血再灌注后,小鼠大脑皮层区和原代皮层神经元细胞中SP1蛋白明显被激活,分别在0.5 h和1 h达到峰值(P0.001,P0.001),使用SP1抑制剂MIT后能够明显抑制缺血再灌注诱导的TIGAR的上升(P0.001),构建的SP1慢病毒能够明显抑制原代皮层神经元细胞中SP1蛋白的表达(P0.001),同时能够明显抑制缺血再灌注诱导的TIGAR的上升(P0.001)。结论:脑缺血再灌注激活TIGAR和p53,并且TIGAR的变化不依赖于p53蛋白。脑缺血再灌注诱导血糖上升,控制血糖水平能够部分抑制TIGAR的表达;葡萄糖不能直接调控TIGAR;升血糖激素(肾上腺素、氢化可的松、胰高血糖素)能够诱导TIGAR,而降血糖激素胰岛素在一定剂量范围内抑制TIGAR的表达。ROS能够诱导TIGAR的表达,抑制ROS则抑制TIGAR的水平。脑缺血再灌注诱导SP1的表达,体外实验证实,TIGAR受SP1的调节。
[Abstract]:Objective: To study the regulation and molecular mechanism of cerebral ischemia reperfusion injury to TIGAR protein. Methods: transient middle cerebral artery occlusion/reperfusion (MCAO/R) model of transient middle cerebral artery (artery occlusion/reperfusion, MCAO/R) model in mice and in vitro cultured primary neurons were cultured in vitro and oxygen deficiency and anoxia reoxygenation (oxygen glucose dripivation/re). Oxygenation, OGD/R) model. Western blot was used to detect the expression of TIGAR and p53 protein in the cerebral cortex and primary cortical neurons of the mice after ischemia. The p53 inhibitor pifithrin-alpha (PFT- alpha, 30 mu M) was given at 0.5 h before ischemia. The effect of alpha on the expression of the primary cortical neurons and the expression of the target protein was detected by Western restriction. P53 protein was knocked out of the primary cortical neurons of p53 lentivirus infection, and the level of TIGAR, p53 and Bax protein in the cells was detected. The blood glucose level of mice before and after ischemia was detected by Johnson glucose meter. The effect of insulin (insulin, 1 U/kg) on the expression of TIGAR in the ischemic cortex area of mice was detected by Western blo method. The injection of glucose in the tail vein of mice was 50%. The liquid (500 g/kg) was used to detect the level of blood sugar and the expression of TIGAR in the cerebral cortex area. The glucose solution of different concentrations (0-150 mu M) was used to stimulate the HT22 cell 2 h, the Western blot method was used to detect the level of TIGAR in the cells, the activity of the cells and the morphology of the HT22 cells were observed by the fluorescence microscope. The mice were injected with adrenaline (0.12mg/kg) in the lateral ventricle. The caudal vein was injected with hydrocortisone (50100200400 mg/kg) and glucagon (0.1,0.5,1,5,10 mg/kg), and Western-blot was used to detect the level of TIGAR in the cerebral cortex, with different concentrations of adrenaline (0.1,1,10,50 mu M), hydrocortisone (0.01,0.1,1,10100 u M), glucagon (0.001,0.01,0.1,1,10 mu M) and insulin (0.0625,0.) (0.0625,0.). 125,0.25,0.5,1 mu M) stimulated the HT22 cell 3 h to detect the level of TIGAR in the cells. The primary cultured cortical neurons were cultured in vitro, and the oxidative stress model was created by co culture of hydrogen peroxide (H2O2,10,30,90 M). The survival rate of the cells was detected by CCK8. The GSH level of the cells was detected by GSH/GSSG reagent box. The level of intracellular TIGAR was detected by Western-blot method. Antioxidant NADPH (10 u M) was given 4 h ahead of time to detect the level of TIGAR and ROS in cells. Western blot method was used to detect the expression of SP1 protein in the cerebral cortex and primary cortical neurons of the mice after ischemia, and 24 h before ischemia. The effect of MIT on the expression of TIGAR in the primary cortical neurons was detected by T, and the protein level of TIGAR and SP1 in the primary cortical neurons of the SP1 lentivirus infection was detected and the protein level of TIGAR and SP1 in the cells was detected. Results: after cerebral ischemia reperfusion in mice, the level of TIGAR increased significantly, and the peak value reached the peak at 3 h (P0.001). The white level was significantly higher, at the peak of 3 h and 6 h respectively (P0.01, P0.001).Western blot results showed that the use of p53 inhibitor PFT- alpha had no effect on the increase of TIGAR induced by ischemia-reperfusion, but could obviously inhibit Bax level of p53 target protein (P0.001). The constructed slow virus could significantly inhibit the primary cortical neurons cells. The protein level of p53 and Bax had no significant influence on the expression of TIGAR. After cerebral ischemia and reperfusion in mice, the blood glucose level increased significantly, reached a peak at 0.5 h (P0.001). After using insulin to control the blood glucose level (P0.001), the induced expression of TIGAR was partially inhibited (P0.01). The glucose level of the tail vein of mice was injected with 50% glucose solution. The blood glucose level was clear. There was no obvious change in the level of TIGAR. The cultured hippocampal neuron cell line HT22 cells were cultured in vitro, and the glucose continued to be 2 h. The expression of TIGAR, cell vitality and morphology did not significantly affect the.HT22 cells after the glucose free pre culture 4 h to add glucose to 2 h, Western blot results showed the level of TIGAR. In the in vivo experiment, Western blot results showed that adrenaline could obviously induce TIGAR protein (P0.001, P0.001, P0.001), and hydrogenated cortisone could induce TIGAR protein expression at 3 h, and showed a dose dependence. The 50 mg/kg hydrocortisone activated TIGAR expression obviously at 1 h and 2 h after administration; 0.5 and 1. Glucagon was able to induce TIGAR expression (P0.05, P0.05) at 2 h after administration. In vitro, HT22 cells added 3 h after adding hormone, and Western blot showed that 1 micron of adrenaline, 0.1 micron hydrocortisone and 1 micron M glucagon could increase the expression of TIGAR. Meanwhile, low doses of insulin In a certain low concentration, the expression of TIGAR protein was inhibited and the high dose of insulin activated TIGAR (P0.01, P0.001). The primary cultured cortical neurons were cultured, and H2O2 was added to the oxidative stress model. The results of CCK-8, GSH, DHE and Western blot showed that 30 and 90 mu M H2O2 effectively inhibited the activity of neuron cells. The intracellular GSH level (P0.05, P0.001) was reduced, and the ROS level in the cell (P0.01, P0.01) was increased. At the same time, the H2O2 could obviously activate the expression of TIGAR at the time of 3 h, and showed a dose dependence. 4 h added to the antioxidant NADPH. .Western blot results showed that after cerebral ischemia-reperfusion, the SP1 protein in the cerebral cortex and primary cortical neurons of the mice was activated obviously, reaching the peak value at 0.5 h and 1 h respectively (P0.001, P0.001). The SP1 inhibitor MIT could obviously inhibit the increase of TIGAR induced by ischemia-reperfusion (P0.001), and the SP1 lentivirus could be obvious. Inhibition of the expression of SP1 protein (P0.001) in the primary cortical neuron cells (P0.001), and can obviously inhibit the increase of TIGAR induced by ischemia-reperfusion (P0.001). Conclusion: cerebral ischemia reperfusion activates TIGAR and p53, and the changes of TIGAR are not dependent on p53 protein. Cerebral ischemia reperfusion induces blood glucose increase, and the control of blood glucose level can partly inhibit TIGAR The expression of glucose can not directly regulate TIGAR, and the hyperglycemic hormone (adrenaline, hydrocortisone, glucagon) can induce TIGAR, while hypoglycemic hormone insulin inhibits the expression of TIGAR in a certain dose and induces the expression of TIGAR and inhibits the level of ROS to inhibit TIGAR. The expression of SP1 is induced by cerebral ischemia-reperfusion. In fact, TIGAR is regulated by SP1.
【学位授予单位】:苏州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R743.3
【相似文献】
相关期刊论文 前10条
1 罗建忠,朱文斌;脑缺血再灌注中补体激活的实验研究[J];医学临床研究;2003年06期
2 周杰,冯忠堂,徐蔚;脑缺血再灌注后迟发性神经元死亡的分子机制[J];河南实用神经疾病杂志;2004年04期
3 周鹏;马晓明;;电针治疗脑缺血再灌注损伤机理的研究概况[J];云南中医学院学报;2008年06期
4 蔡世昌;白波;张秋玲;;脑缺血再灌注后神经细胞再生研究进展[J];解剖学研究;2012年01期
5 王锐;脑缺血再灌注与线粒体研究[J];医学综述;2002年07期
6 吕少萍,管勇;尼莫通对脑缺血再灌注细胞凋亡相关基因表达影响[J];青岛大学医学院学报;2005年02期
7 高蕊;甘尚权;;脑缺血再灌注损伤后小分子RNA的分析[J];山东大学学报(医学版);2011年10期
8 张莹;舒兆瑞;沈梅红;;线栓法制备脑缺血再灌注的影响因素及探讨[J];辽宁中医药大学学报;2012年12期
9 岑德意,周兰兰,明亮,江勤,马传庚;清醒小鼠反复脑缺血再灌注法致学习记忆障碍模型的建立[J];中国药理学通报;2000年02期
10 裴林,李勇,颜景芝,张光毅,崔肇春,朱正美;脑缺血再灌注后酪氨酸蛋白激酶和蛋白磷酸酶的活性变化及其机制(英文)[J];Acta Pharmacologica Sinica;2000年08期
相关会议论文 前10条
1 薛晶;冯加纯;邓方;韩冬;程莹莹;金桂花;;脑缺血再灌注早期的炎症和自由基反应的动态变化[A];第十一届全国神经病学学术会议论文汇编[C];2008年
2 张美蓉;张丽;艾厚喜;王文;;参黄花颗粒抗脑缺血再灌注损伤机理研究综述[A];中国药理学会补益药药理专业委员会成立大会暨人参及补益药学术研讨会会议论文集[C];2011年
3 张美蓉;王文;;参黄花颗粒抗脑缺血再灌注损伤机理研究综述[A];2011全国老年痴呆与衰老相关疾病学术会议第三届山东省神经内科医师(学术)论坛论文汇编[C];2011年
4 张美蓉;张丽;艾厚喜;王文;;参黄花颗粒抗脑缺血再灌注损伤机理研究综述[A];第一届全国麻醉药理专业委员会第二次学术会议论文集[C];2011年
5 张美蓉;张丽;艾厚喜;王文;;参黄花颗粒抗脑缺血再灌注损伤机理研究综述[A];中国成人医药教育论坛(4)[C];2011年
6 ;参黄花颗粒抗脑缺血再灌注损伤机理研究综述[A];2012中国医师协会中西医结合医师分会神经病学专家委员会学术年会论文汇编[C];2012年
7 李建生;任小巧;刘轲;刘正国;孔令飞;;老龄大鼠脑缺血再灌注神经细胞凋亡变化规律研究[A];中国中西医结合学会第七次全国实验医学学术研讨会论文汇编[C];2004年
8 葛林宝;徐鸣曙;方程;徐佳;;电针对脑缺血再灌注大鼠纹状体内单胺类递质影响的动态研究[A];全国针法灸法临床与科研学术研讨会暨脊柱病研究新进展论文汇编[C];2005年
9 陈敏;葛金文;陈懿;刘吉勇;朱惠斌;;脑泰方促脑缺血再灌注大鼠脑血管新生的实验研究[A];湖南省首届生理—药理科学青年论坛论文摘要汇编[C];2009年
10 邓世芳;蒋红玉;张思为;曹平;;芪棱汤对大鼠脑缺血再灌注后热休克蛋白70的影响[A];中华中医药学会血栓病分会第四次学术研讨会暨广东省中医药学会血栓病专业委员会首届学术研讨会论文集[C];2010年
相关重要报纸文章 前3条
1 衣晓峰;哈医大揭示静麻对脑缺血再灌注损伤后的保护机理[N];中国医药报;2007年
2 ;抗呆I号对受损神经组织有保护和修复作用[N];中国中医药报;2005年
3 罗薇;中药治疗VD实验研究进展[N];中国医药报;2004年
相关博士学位论文 前10条
1 沙莹;粒细胞集落刺激因子对脑缺血再灌注大鼠的治疗及其作用机制的研究[D];吉林大学;2010年
2 瞿涛;电针对脑缺血再灌注大鼠脑内血管新生影响的研究[D];湖北中医学院;2009年
3 张莉;针刺对大鼠脑缺血再灌注后线粒体损伤相关因素影响的研究[D];北京中医药大学;2004年
4 李强;雷帕霉素对脑缺血再灌注后线粒体损伤的影响[D];上海交通大学;2014年
5 宋锐锋;中药抗呆Ⅰ号对脑缺血再灌注星形胶质细胞因子的影响[D];北京中医药大学;2002年
6 郑一;大鼠脑缺血再灌注后迟发性神经元死亡的药物干预研究[D];中国人民解放军军医进修学院;2007年
7 赵红;高压氧对脑缺血再灌注小鼠血脑屏障通透性的影响[D];中国医科大学;2003年
8 晁晓东;缺血再灌注脑损伤后蛇床子素的作用及机制研究[D];第四军医大学;2011年
9 朱肖菊;电项针对脑缺血再灌注大鼠脑保护作用的实验研究[D];黑龙江中医药大学;2008年
10 丁德光;电针对脑缺血再灌注大鼠脑损伤保护作用及机制的研究[D];湖北中医学院;2006年
相关硕士学位论文 前10条
1 崔晓雅;参芎化瘀胶囊预处理对脑缺血再灌注大鼠一氧化氮合酶亚型表达的影响[D];河北联合大学;2014年
2 孙美玲;脑缺血再灌注中TIGAR蛋白调控的分子机制[D];苏州大学;2015年
3 高赛红;高血脂对大鼠脑缺血再灌注损伤后p38和MMP-9表达的影响[D];山西医科大学;2015年
4 沙鹏;mTOR对脑缺血后适应改善认知功能作用的研究[D];昆明医科大学;2015年
5 马建鹏;康脑液对大鼠脑缺血再灌注损伤后神经血管因子、MMP-9、ERK1/2表达的影响[D];河北北方学院;2015年
6 江涛;电针通过神经元α7nAChR调控炎症小体减轻脑缺血后神经炎症的作用及其机制[D];第四军医大学;2015年
7 李逸尘;大鼠脑缺血再灌注后海马内皮细胞生长因子与突触素关系的研究[D];兰州大学;2006年
8 宋兵;黄连素对脑缺血再灌注小鼠损伤和免疫系统的影响[D];暨南大学;2009年
9 李林;黄芩苷对脑缺血再灌注小鼠及其免疫系统的保护作用[D];暨南大学;2009年
10 付琪;文冠果柄苷对脑缺血再灌注小鼠学习记忆障碍的改善作用[D];沈阳药科大学;2009年
,本文编号:1893715
本文链接:https://www.wllwen.com/yixuelunwen/shenjingyixue/1893715.html