血管内皮生长因子-C在颞叶内侧癫痫中的作用及机制研究
[Abstract]:Mesial temporal lobe epilepsy (MTLE) is a common focal epilepsy in adults, and the MTLE patients with localized epilepsy around.75% have developed into drug refractory epilepsy due to their insensitivity to existing antiepileptic drugs. At present, surgical excision of epileptic foci is often used to control epileptic seizures. So far, the pathogenesis of MTLE has been studied, but its specific mechanism is still unclear. Recently, recent studies have found that recurrent seizures often cause neuroinflammatory reactions in the brain, accompanied by functional damage to the blood brain barrier. On the other hand, the neuroinflammatory response and damage to the blood brain barrier can also promote the occurrence of MTLE. A positive feedback mechanism between the two forms a vicious cycle and promotes the development of epilepsy. Evidence from the MTLE clinical specimens and animal models shows that vascular endothelial growth factor (VEGF) plays an important role in regulating the permeability of the blood brain barrier and the neuroinflammation of the.VEGF family. It includes 7 members, VEGF, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F, and placental growth factors. Previous studies have done a more comprehensive and in-depth study of the role of VEGF in a variety of nervous system diseases, including MTLE. except VEGF. In recent years, more and more studies have begun to focus on the role of VEGF-C in the central nervous system. VEGF-C is an important growth factor that regulates lymphatic vessels and angiogenesis and plays a biological role by combining its receptor VEGFR-2 and VEGFR-3. Studies have shown that VEGF-C is closely related to neuroinflammation and blood brain barrier permeability. For example, VEGF-C is highly expressed in the brain of rats with hemorrhagic stroke and bone marrow transplantation. On reactive astrocytes and microglia, VEGF-C and its receptor VEGFR-2 and VEGFR-3 are also highly expressed in reactive astrocytes of the nodular (Tuberous sclerosis complex, TSC) hardened cortical nodules closely related to intractable epilepsy in children. In addition, VEGF-C can significantly increase the blood brain in the Parkinson model of rats. The permeability of the barrier. Then, what is the expression pattern of VEGF-C in the MTLE? What is its role and mechanism in the occurrence of MTLE? These are all issues worthy of our attention and further study. Therefore, in this study, we first observed VEGF-C and its receptor in MTLE by real-time quantitative PCR, Western blot and immunohistochemistry. The expression and cell location in the patient's excised lesion were then used in the pilocarpine induced mouse MTLE model with Western blot, and the video EEG was used to detect VEGF-C and its receptors in the acute phase of the epileptic seizures (3 hours) in MTLE mice, the latent period (1 weeks) and the expression of the chronic self epileptic seizures (3 weeks) and the shadow of the epileptic seizures. At the same time, Enzyme-linked immune response (ELISA) was used to detect the molecular albumin (Albumin) of VEGF-C and its receptor on the blood brain barrier in the hippocampus of MTLE mice at these three time points, and four kinds of interleukins 1 beta (IL-1 beta) IL-6, IL-17 and tumor necrosis factor alpha (TNF- alpha) were closely related to the development of MTLE. Inflammatory factors, as well as the role of the mTOR signaling pathway (the activation of the mTOR as a marker of p-S6 expression). In addition, as we found that VEGF-C can up-regulate the afore-mentioned inflammatory factors in the MTLE animal model, and our previous study found that IL-17 plays an important role in the development of brain disorders associated with epileptic seizures, so we also studied The expression and distribution of IL-17 and its receptor IL-17R in the surgical excised lesions of MTLE patients. Through these studies, we have obtained the following results: the expression level of 1.VEGF-C, VEGFR-2 and VEGFR-3 in the epileptic foci and cerebrospinal fluid and serum in MTLE patients is significantly higher than that in the control group. The results of.2. immunization and fluorescence double labeling show that VEGF-C is highly expressed in M. The neurons of TLE, reactive astrocytes, and vascular endothelial cells, VEGFR-2 were highly expressed on reactive astrocytes and vascular endothelial cells, while VEGFR3 was only highly expressed on reactive astrocytes of.3. in pilocarpine induced MTLE mold, and VEGF-C, VEGFR-2 and VEGFR-3 were 3 h in epileptic seizures. The protein expression of 1W, and 3 W increased significantly in.4. video EEG monitoring results, and the results showed that VEGF-C significantly increased the frequency of spike wave discharge and the number of epileptic seizures at the three time points of MTLE mice, and the effect could be increased by VEGFR-2 or VEGFR-3 antagonists on the up regulation of MTLE rat hippocampus at the same time point albumin, IL-1 beta. The expression of IL-6, IL-17, TNF- a, p-S6, VEGFR-2 antagonists block the above effects. VEGFR3 antagonists can block the effect of.6.IL-17 and IL17R in.6.IL-17 and IL17R in the epileptic foci of MTLE patients. The expression level of mRNA and protein is significantly higher than that of the control group, and the.7.IL-17 and IL-17R are higher in the neurons of the foci, reactive astrocytes and small Our findings suggest that VEGF-C signaling pathway plays an important role in the pathogenesis of MTLE.
【学位授予单位】:第三军医大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R742.1
【相似文献】
相关期刊论文 前10条
1 Den Heijer T. ,Launer L.J. ,Prins N.D. ,M.M.B. Breteler,邓剑平;血压、白质损伤和颞叶内侧萎缩之间的联系[J];世界核心医学期刊文摘(神经病学分册);2005年06期
2 张华;梁秦川;井晓荣;王超;郭恒;游宇;王海伟;高国栋;;难治性颞叶内侧癫痫术前评估方法再评价[J];立体定向和功能性神经外科杂志;2009年01期
3 王子珍;杨X;蔡雄;黄秋虎;马春阳;陈政刚;孙邦勇;;手术治疗颞叶内侧癫痫19例报告[J];山东医药;2009年20期
4 杨旭;高晋健;;影响颞叶内侧癫痫手术疗效相关因素的研究进展[J];国际神经病学神经外科学杂志;2012年02期
5 杨旭;高晋健;;提高颞叶内侧癫痫手术疗效的研究进展[J];西南军医;2012年03期
6 周文静,胡泽勇,匡山,夏廷毅,刘晓丽,吕聪伶,张纪;伽玛刀治疗颞叶内侧癫痫疗效分析[J];立体定向和功能性神经外科杂志;2004年05期
7 Pataraia E.,Simos P.G. ,Castillo E.M. ,袁海峰;脑损伤或颞叶内侧癫痫患者语言特异性皮层的重构[J];世界核心医学期刊文摘(神经病学分册);2005年04期
8 徐波涛;梁军潮;王伟民;覃子衡;吴鸿勋;张聿浩;李林;周丽兰;宁琼芳;;伽玛刀治疗顽固性颞叶内侧癫后放射性脑水肿的临床分析[J];中国微侵袭神经外科杂志;2008年01期
9 马辉;夏鹤春;孙涛;Carlo. Marras;;前颞叶内侧切除术治疗颞叶内侧型癫痫[J];山东医药;2009年30期
10 梁文能;雷进;;颞叶内侧癫痫的伽玛刀治疗[J];四川医学;2010年12期
相关会议论文 前10条
1 李文玲;;49例颞叶内侧癫痫手术疗效分析[A];中华医学会神经外科学分会第九次学术会议论文汇编[C];2010年
2 陈旭;舒凯;雷霆;;颞叶内侧癫痫的手术治疗[A];中国医师协会神经外科医师分会第六届全国代表大会论文汇编[C];2011年
3 袁冠前;韩松;吕博川;梁国标;;深部电极对不典型颞叶内侧型癫痫的定位作用分析[A];中国医师协会神经外科医师分会第六届全国代表大会论文汇编[C];2011年
4 周文静;胡泽勇;匡山;夏廷毅;刘晓丽;吕聪伶;严铁石;王丽丽;孙宗权;王莹;张纪;;伽玛刀治疗颞叶内侧癫痫疗效分析[A];中华医学会第七次全国神经病学学术会议论文汇编[C];2004年
5 舒凯;蒋伟;马杰;李龄;雷霆;;颞叶内侧癫痫的手术治疗[A];2011中华医学会神经外科学学术会议论文汇编[C];2011年
6 舒凯;马杰;雷霆;;颞叶内侧癫痫的手术治疗[A];中华医学会神经外科学分会第九次学术会议论文汇编[C];2010年
7 袁贤瑞;姜尚军;杨治权;刘庆;奚健;;颞叶内侧癫痫的显微手术治疗与发病机制研究[A];2011中华医学会神经外科学学术会议论文汇编[C];2011年
8 宋施委;杨卫忠;石松生;陈建屏;倪天瑞;房新蓉;;颞叶内侧癫痫术前多项评估方法的对比研究[A];2011中华医学会神经外科学学术会议论文汇编[C];2011年
9 董艳芳;李志军;;海马有病损的颞叶内侧癫痫手术[A];中国解剖学会2012年年会论文文摘汇编[C];2012年
10 薛愉洁;姜雪;;难治性颞叶内侧癫痫手术的术中配合及护理[A];中华护理学会第14届全国手术室护理学术交流会议论文汇编(上册)[C];2010年
相关博士学位论文 前2条
1 孙飞吉;血管内皮生长因子-C在颞叶内侧癫痫中的作用及机制研究[D];第三军医大学;2016年
2 陈兴河;颞叶内侧区显微解剖及手术入路研究[D];天津医科大学;2009年
相关硕士学位论文 前7条
1 姜尚军;颞叶内侧癫痫的显微手术治疗与发病机制研究[D];中南大学;2011年
2 梁文能;脑电立体定位系统引导伽玛刀治疗颞叶内侧癫痫的研究[D];泸州医学院;2011年
3 孙飞吉;TRPV1在药物难治性颞叶内侧癫痫中的表达及作用研究[D];第三军医大学;2013年
4 卢峰;颞叶内侧癫痫致痫侧海马CA1区凋亡相关分子的表达及意义[D];福建医科大学;2008年
5 罗惠民;无框架立体定向海马杏仁核毁损术治疗颞叶内侧癫痫病例回顾分析[D];第二军医大学;2013年
6 赵泽仙;颞叶内侧面癫痫脑血流灌注动态变化[D];浙江大学;2015年
7 罗景华;颞叶内侧癫痫患者海马区胶质细胞中GFAP、GLAST及GLT-1的表达[D];福建医科大学;2010年
,本文编号:2152771
本文链接:https://www.wllwen.com/yixuelunwen/shenjingyixue/2152771.html