应用芬戈莫德调控免疫炎症反应治疗蛛网膜下腔出血的实验研究
[Abstract]:Objective To investigate the clinical characteristics of spontaneous subarachnoid hemorrhage (SAH) with high morbidity and mortality. At present, there is no effective treatment for SAH neurological dysfunction. To observe the changes of early immune inflammation reaction in SAH, and to explore a new way to treat SAH with Fingolimod. Part I: Download mouse basilar artery gene chip (GSE46696) from gene expression database (GEO), analyze the gene changes of sham operation group (Sham group) and model group (SAH group) by microarray, analyze the function of differentially expressed genes, pathway enrichment analysis and gene-gene interaction analysis by Cytoscape software. The second part: 12 mice in sham operation group (Sham group) and 12 mice in SAH group (SAH group), 6 mice in sham operation group (Sham group) and 6 mice in sham operation group (SAH group) were selected to detect the natural killer cells (NK), CD4 + and CD25 + endogenous regulatory T cells (Treg) by flow cytometry on the 1st and 3rd day after modeling, respectively. Six mice in sham operation group (Sham group) and 6 mice in SAH group (SAH group) were selected to detect the brain tissue immunity by Western Blot. Sexual factors, according to the results of the first part of this paper, the relatively significant immunoinflammatory factors or inflammatory pathways IL-1beta, TNF-a, NF-kappa B and TLR4 were detected. Part III: This part of the experiment was divided into sham operation group (Sham group), model + saline placebo group (SAH + Saline group), model + Fengolimod treatment group (SAH + Fingolimod group), SAH + Fingolimod group (SAH + Fingolimod group), SAH + Fingolimod group. The golimod group was injected intraperitoneally with Fingolimod (FTY720) 2 hours, 48 hours and 72 hours after modeling, and the concentration was 0.1 mg/ml (about 200-230 UG per mouse according to body weight). Six mice were selected from the three groups on the 1st and 3rd days after modeling. The endogenous regulatory activity of NK, CD4 + and CD25 + in the brain tissue of the model mice was detected by flow cytometry. T cells were extracted from 6 mice in 3 groups on the 3rd day after modeling administration, and inflammatory cytokines or inflammatory pathways IL-1beta, TNF-alpha, NK-kappa B and TLR4 were detected by Western Blot. Six mice in 3 groups were extracted on the 1st, 3rd, 7th and 14th day after modeling administration, respectively, and the water content in brain tissue was detected. Six mice were injected with 2% Evans blue (EB) solution from the tail vein to detect the content of EB in brain tissue. Six mice were selected from the three groups on the 1st, 3rd, 7th, 10th and 14th day after the injection. The neurological function of the mice was evaluated by mNNS score and Morris water maze test. Functional analysis of these subunits revealed that early immune inflammation may be an important cause of poor prognosis in SAH. Significant changes in inflammatory factors such as IL-1beta, TNF-alpha, and inflammatory pathways such as NF-kappa B and TLR4 may be one of the sensitive markers of the severity of early brain injury (EBI) in SAH. Part II: Early NK cells / CD3 + T after SAH modeling. The percentage of CD4 + and Foxp3 + T cells in SAH group was slightly higher than that in Sham group (all P 0.05). The percentage of CD4 + and Foxp3 + T cells in SAH group was slightly higher than that in Sham group (all P 0.05). There was no significant difference between Western Blot and Sham group in the detection of inflammatory factors or pathways of IL-1 beta, TNF-a, NF-kappa B and TLR4 and beta-actio. Compared with Sham group, the proportion of N protein increased significantly (all P 0.05). Part III: In early SAH, the number of NK cells, CD3 + T cells in SAH + Saline group and SAH + Fingolimod group was higher than Sham group, and the number of CD4 + and Foxp3 + T cells in SAH + Fingolimod group was lower than that in SAH + Saline group (all P 0.05). The expression of IL-1 beta, TNF-a, NF-kappa B and TLR4 in SAH + Fingolimod group was lower than that in SAH + Saline group (all P 0.05), and the expression of inflammatory factors or pathway protein and the ratio of beta-action protein in SAH + Fingolimod group were lower than that in SAH group at the same time point (all P 0.05). The brain water content of SAH + Fingolimod group was significantly lower than that of SAH + Saline group (all P 0.05), and the brain EB content of SAH + Fingolimod group was significantly lower than that of SAH + Saline group on the 3rd and 7th day (all P 0.05), and the mNSS score of SAH + Fingolimod group was significantly lower than that of SAH + Saline group (all P 0.05). Morris water maze test showed that the cognitive function of SAH + Fingolimod group was better than that of SAH + Saline group, and there was significant difference in the indexes of acquired training and contraposition training (P 0.05). Immunoinflammation has attracted more and more attention and has a direct impact on the prognosis. Through this experiment, we can preliminarily determine that immunoinflammation is an important factor of early brain injury in SAH. Immune cells and inflammatory factors play an important role in the process of brain injury and repair. Fingolimod is a new immunosuppressive agent, which can effectively regulate immune function, reduce the proportion of NK cells, and increase Treg cell level. Alleviating inflammation injury is helpful to promote the repair of brain injury after SAH, improve the permeability of BBB, and improve the prognosis of SAH. It opens up a new way for the early drug regulation and treatment of SAH in the future, and provides basic experimental preparation for the implementation of clinical POC research, which will certainly bring unprecedented clinical significance and social benefits. Fingolimod, a new immunosuppressive agent, intervenes in the pathophysiological response of EBI after SAH, alleviates CVS and improves the prognosis of SAH by regulating the levels of NK cells, Treg cells, IL-1beta, TNF-a, NF-kappa B and TLR4.
【学位授予单位】:天津医科大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:R743.35
【相似文献】
相关期刊论文 前10条
1 姜明静;曹立颖;刘宁;;芬戈莫德治疗复发缓解型多发性硬化的系统评价[J];中国神经免疫学和神经病学杂志;2013年02期
2 ;美国警示芬戈莫德与严重脑部感染风险[J];中国药物评价;2013年05期
3 田瑜;程卯生;;芬戈莫德[J];中国药物化学杂志;2011年01期
4 陈志强;曹运莉;王音;朱珠;;新型口服抗复发性多发性硬化药物——芬戈莫德[J];中国药学杂志;2011年15期
5 郑明克;肖鹤;黎燕;马远方;;新型免疫抑制剂芬戈莫德的研究进展[J];国际药学研究杂志;2013年01期
6 于刚;张庆文;;盐酸芬戈莫德合成路线图解[J];中国药物化学杂志;2013年04期
7 郭宗儒;;从天然产物到免疫调节药物芬戈莫德[J];药学学报;2014年01期
8 赵玉娜;邢爱敏;;多发性硬化症治疗药芬戈莫德[J];药学进展;2010年12期
9 李刚;韩伟娟;金晶;汪小涧;肖琼;周琬琪;尹大力;陈晓光;;含二苯醚结构的芬戈莫德类似物的设计、合成及其生物活性研究[J];药学学报;2014年06期
10 王成;;芬戈莫德联合骨髓间充质干细胞移植脑创伤大鼠记忆功能的变化[J];中国组织工程研究;2014年28期
相关会议论文 前10条
1 李荟苹;张_g;;转化生长因子β与免疫炎症反应[A];2010全国中西医结合危重病、急救医学学术会议论文汇编[C];2010年
2 李荟苹;;转化生长因子β与免疫炎症反应[A];中华医学会急诊医学分会第十六次全国急诊医学学术年会论文集[C];2013年
3 刘国荣;张京芬;;中国蛛网膜下腔出血流行病学研究[A];中华医学会第十三次全国神经病学学术会议论文汇编[C];2010年
4 林传成;;警畅老年人蛛网膜下腔出血附140例老年人蛛血特点分析[A];老年学论文集——福建省首次老龄问题学术研讨会论文选[C];1995年
5 王广;;蛛网膜下腔出血并发急性梗阻性脑积水的诊断与治疗(附二例报告)[A];中华医学会急诊医学学会第六次全国急诊医学学术会议论文汇编[C];1996年
6 余新民;;老年人蛛网膜下腔出血误诊分析[A];第三届全国中西医结合神经系统疾病学术会议论文集[C];2000年
7 李志东;张树雄;邸晓鹿;;不典型蛛网膜下腔出血31例报道[A];第三届全国少数民族地区神经病学会论文汇编[C];2005年
8 麦卫国;谢颖;黄天云;;对特殊类型蛛网膜下腔出血影像的再认识[A];中华医学会第十三届全国放射学大会论文汇编(下册)[C];2006年
9 裘国松;周增杰;;老年人蛛网膜下腔出血的临床特点[A];中国民政康复医学第四届学术会议论文集[C];1993年
10 王茂旭;曲中;王洪琛;;饮酒、损伤与蛛网膜下腔出血的关系[A];第四次全国法医学术交流会论文集(上卷)[C];1991年
相关重要报纸文章 前10条
1 Kristen Hallam 翻译 枫叶;芬戈莫德标签被添新警告[N];医药经济报;2012年
2 Simeon Bennett 翻译 徐树明;诺华提交Gilenya安全记录[N];医药经济报;2012年
3 Simeon Bennett 翻译 徐树明;死亡事件引发芬戈莫德市场份额下滑[N];医药经济报;2012年
4 Simeon Bennett 翻译 王迪;诺华利润下跌8%[N];医药经济报;2012年
5 黄远桃;老人蛛网膜下腔出血易误诊[N];大众卫生报;2004年
6 霍滨;蛛网膜下腔出血可呈现癫痫发作[N];健康报;2006年
7 白轶南;蛛网膜下腔出血后易复发[N];健康时报;2007年
8 禾丰;头痛与蛛网膜下腔出血[N];农村医药报(汉);2007年
9 指导专家 第三军医大学大坪医院脑血管病医院第三科主任 蒋晓江 记者 李艳 通讯员 朱广平;蛛网膜下腔出血 保守治疗风险高[N];医药导报;2006年
10 王惠英 臧海玉;精神异常者要警惕蛛网膜下腔出血[N];中国中医药报;2004年
相关博士学位论文 前10条
1 王毅;应用芬戈莫德调控免疫炎症反应治疗蛛网膜下腔出血的实验研究[D];天津医科大学;2017年
2 付莹;神经疾病的免疫干预[D];天津医科大学;2016年
3 王涛;1.半胱胺对大鼠蛛网膜下腔出血后早期脑损伤的保护作用 2.鸦胆子苦素A与酮康唑对细胞色素P450(CYP)3A4的潜在抑制作用对比研究[D];山东大学;2015年
4 孙青;高迁移率族蛋白1在蛛网膜下腔出血后早期脑损伤中的作用研究[D];南京大学;2014年
5 庄宗;氢气在兔蛛网膜下腔出血后早期的脑保护作用及机制研究[D];南京大学;2014年
6 崔永华;硫化氢对蛛网膜下腔出血后早期脑损伤的影响及其机制的研究[D];苏州大学;2016年
7 党宝齐;Cyclophilin A/CD147信号通路在蛛网膜下腔出血后早期脑损伤中的作用及其分子机制研究[D];苏州大学;2016年
8 刘昊;高压氧对蛛网膜下腔出血大鼠早期脑损伤的作用机制研究[D];南方医科大学;2016年
9 莫杭波;头孢曲松在蛛网膜下腔出血早期脑损伤中的保护作用及机制研究[D];浙江大学;2016年
10 钱聪;SIRT1在大鼠蛛网膜下腔出血后早期脑损伤模型的神经保护作用及机制研究[D];浙江大学;2016年
相关硕士学位论文 前10条
1 何艳茹;芬戈莫德和特立氟胺治疗复发缓解型多发性硬化的成本效果分析[D];山西医科大学;2016年
2 曹润菁;芬戈莫德(FTY720)对实验性自身免疫性脑脊髓炎小鼠细胞因子表达的影响[D];河北医科大学;2016年
3 陈冰;芬戈莫德的合成及质量研究[D];吉林大学;2014年
4 耿俊楠;HSPA1A和HSPA8在分娩中的功能研究[D];华中农业大学;2016年
5 卢博;芬戈莫德对于大鼠颈动脉损伤后狭窄以及基质金属蛋白酶-9表达的影响[D];兰州大学;2014年
6 刘春苗;芬戈莫德对EAE大鼠的防治作用及对脑脊髓组织BAX,,TLR9表达的影响[D];中南大学;2011年
7 熊平;促红细胞生成素对大鼠蛛网膜下腔出血后血管痉挛防治作用的实验研究[D];川北医学院;2015年
8 陈扬;实验性蛛网膜下腔出血后海马微血管密度及侧脑室脉络丛的变化[D];河北联合大学;2014年
9 徐祥;mTOR信号通路在蛛网膜下腔出血后早期脑损伤中的作用及机制研究[D];苏州大学;2015年
10 陈军辉;阿托伐他汀对兔蛛网膜下腔出血后早期脑损伤的保护作用及其机制的实验研究[D];安徽医科大学;2015年
本文编号:2197839
本文链接:https://www.wllwen.com/yixuelunwen/shenjingyixue/2197839.html