帕金森小鼠模型运动技能学习障碍的突触可塑性机制
[Abstract]:Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The most significant pathological change is the depletion of dopaminergic neurons in the brain. The main clinical symptoms include motor dysfunction and cognitive impairment, especially motor learning impairment. Most studies focus on the basal ganglia, indicating that motor dysfunction is mainly caused by abnormalities in the structure and function of the basal ganglia neural circuits, but there is no good explanation for the decline of motor learning ability and memory impairment in PD. Adaptability is an important basis for motor learning. Dopaminergic signal processing in the motor cortex can enhance the coordination of related movements and facilitate the completion of fine movements. Symptoms. So, what happens to the motor cortical circuits as dopaminergic neurons are depleted? Is this an intrinsic cause of motor learning and memory impairment? To solve these problems, we created skull windows in the skulls of Thy1-YFP-H line transgenic mice and demonstrated them with two-photon laser scans. The apical dendrites of the fifth layer of vertebral neurons were imaged in vivo under microscope to study the dynamic changes of synaptic plasticity induced by dopamine depletion in the motor cortex. The main contents of this study were as follows: (1) Establishing stable and reliable motor cortex synaptic plasticity in PD mice. PD mouse model was established by continuous intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The damage degree of dopaminergic neurons was identified by immunohistochemical staining, and the reliability and stability of the PD model were tested. Dynamic changes of dendritic spines in the motor cortex of mice: Two-photon in vivo imaging of the primary motor cortex of mice with different PD models revealed a significant increase in the formation and extinction rates of dendritic spines, but this increase occurred only in the primary motor cortex, and the change rate of dendritic spines in the nearby barrel cortex remained unchanged. Effects. Using L-DOPA, the most commonly used drug in the treatment of PD, exogenous dopamine supplementation could partly reverse the increased plasticity of motor cortical dendritic spines induced by dopamine depletion, suggesting that the increased dynamic changes of motor cortical dendritic spines should be due to dopamine depletion. (3) The remodeling of primary motor cortical nerve circuits in PD mice: with the increase of dopamine depletion With the increase of MPTP dosage, the damage of dopaminergic neurons was aggravated. The formation rate, extinction rate and change rate of dendritic spines in the motor cortex of PD mice increased continuously, and the density of dendritic spines decreased slightly. These data indicate that with the depletion of dopaminergic neurons, the abnormal dynamic plasticity of the motor cortex through the dendritic spines makes the original synaptic junction selective disappear, and the new synaptic junction specificity is established, resulting in the disorder of the original neural connection, and the abnormal remodeling of the neural circuits. (4) The motor skills learning and memory of PD mice Synaptic mechanism of dysfunction: PD mice were trained in motor skill learning, and two-photon in vivo imaging was used to imaging at different intervals during training. The formation rate, extinction rate and stability rate of new dendritic spines induced by motor skill learning were analyzed. Amine depletion is manifested in behavioral learning and memory impairment of motor skills, and in neural circuits, dendritic spines in the motor cortex do not grow and die normally during learning, and the stability of the new dendritic spines induced by motor learning skills decreases. In summary, this study first confirmed the abnormality of synaptic plasticity in the motor cortex of Parkinson's mice by two-photon in vivo imaging, and observed a large number of abnormal synaptic loss and birth of the basic structural unit of neural signal transduction. The synaptic mechanism of motor learning and memory impairment in Parkinson's mouse model was elucidated by behavioral experiments.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R742.5;R-332
【相似文献】
相关期刊论文 前1条
1 黄竹杭;李高峰;赖勤;杨雪芹;;运用外部注意焦点提高高水平选手开放式运动技能学习效率的实验研究[J];北京体育大学学报;2012年07期
相关会议论文 前8条
1 魏高峡;罗劲;李佑发;;长时运动技能学习对运动员大脑结构的影响[A];第五届全国青年体育科学学术会议、第二届中国体育博士高层论坛论文集[C];2008年
2 孙夕鹭;于秀;;不同知觉通道偏爱小学生的课堂运动技能学习特征[A];第九届全国体育科学大会论文摘要汇编(2)[C];2011年
3 周亚琴;;内隐运动技能学习中反馈研究的文献分析[A];第十三届全国高校田径科研论文报告会论文专辑[C];2003年
4 钱建龙;何琴;;运动技能学习困难中学生亚健康状况调查研究[A];第4届全国青年体育科学学术会议论文摘要汇编[C];2005年
5 张绍礼;赫秋菊;;体育教育专业学生运动技能学习策略的现状调查与分析[A];第七届全国体育科学大会论文摘要汇编(一)[C];2004年
6 钱建龙;;运动技能学习困难中学生体质和心理健康的研究[A];第8届全国运动心理学学术会议论文汇编[C];2006年
7 高新友;马丽君;武小路;徐苗;;运动生理学课程“创新教育”的研究[A];2007全国运动生理学论文报告会论文集[C];2007年
8 许昭;;自主学习能力在铅球教学和跳远教学中的迁移训练[A];第九届全国体育科学大会论文摘要汇编(3)[C];2011年
相关博士学位论文 前3条
1 郭利丽;帕金森小鼠模型运动技能学习障碍的突触可塑性机制[D];华中科技大学;2016年
2 谭嘉辉;足球运动技能学习中注意焦点的追加反馈实验研究[D];北京体育大学;2012年
3 王海燕;复合反馈对运动技能学习影响的研究[D];北京体育大学;2013年
相关硕士学位论文 前10条
1 于淋;注意焦点对新手投掷飞镖技能学习与表现影响的研究[D];武汉体育学院;2015年
2 姚金亭;石家庄市高职院校学生运动技能学习方法研究[D];河北师范大学;2016年
3 季杨;水平四田径运动技能学习评价指标体系的构建[D];辽宁师范大学;2016年
4 孙海勇;运动技能学习的理论研究与实践探索[D];南京师范大学;2008年
5 代刚;学习策略在体育专业运动技能学习过程中的应用性研究[D];贵州师范大学;2006年
6 李芳菲;新课程标准下初中生运动技能学习评价的研究[D];华东师范大学;2010年
7 慎少帅;体育与非体育专业大学生运动技能学习策略比较研究[D];东北师范大学;2012年
8 罗闯;开放式运动技能学习原理在中学篮球传球教学中运用效果研究[D];吉林大学;2014年
9 许昭;运动技能学习的自我调节学习训练研究[D];山东师范大学;2009年
10 李乐;运动技能学习过程中的社会反馈与自我反馈的相互作用研究[D];苏州大学;2013年
,本文编号:2238728
本文链接:https://www.wllwen.com/yixuelunwen/shenjingyixue/2238728.html