当前位置:主页 > 医学论文 > 神经病学论文 >

基于脑实质分割测量的脑萎缩辅助诊断研究

发布时间:2018-10-13 13:28
【摘要】:现如今,医学成像系统已成为临床与医学研究中不可或缺的辅助工具,随着医学成像技术的飞速发展,促进了计算机辅助诊断技术在医学研究和临床实验方面需求庞大且发展迅速,而计算机辅助诊断技术的基础是医学图像的处理,所以医学图像处理技术是一个计算机科学与临床医学多学科相互交叉的研究热点领域之一。随着现代社会人口老年化进程不断加快,而脑萎缩又是老年人十分常见的疾病,这导致了医务人员工作负担的不断增加。为了解决这个问题,可充分发挥和利用现代计算机速度快、效率高和成本低的优势。因此,本文对计算机辅助诊断脑萎缩技术展开研究。在提出脑萎缩辅助诊断系统的基础之上,先对原始脑部医学图像的预处理进行研究,然后讨论脑实质的提取方法,最后重点展开对脑实质分割和脑体积测量技术的研究讨论。论文主要研究成果包括:(1)利用现代图像去噪的技术,通过实验总结出一套适合脑部医学图像的去噪流程及方法。(2)通过分析脑部医学图像的特性和人脑的组织结构,创新使用多重阈值分割算法实现脑实质的提取。(3)通过分析高斯混合模型和K-means两种经典的聚类算法分割脑实质存在的不足来加以改进和融合,创新使用融合后的GKA算法分割脑实质。(4)提出两种不同的脑实质片面积和体积测量的方案,并针对两种不同的方案分别做出实验对比。在使用临床真实的脑部医学图像进行试验后得出结论:本文提出的关于医学图像去噪流程和脑实质提取算法均获得较理想的实验结果;在脑实质分割方面,GKA方法分割的结果更是在各项指标中比传统的高斯混合模型和K-means聚类算法要全面领先;在脑实质的片面积测量方面,由于论文提出的两种测量方法是基于对脑实质片面积的不同定义,从而导致两种方法得出的结果存在一定的差异,但是这两者的结果都具有一定的临床参考价值。
[Abstract]:Nowadays, medical imaging system has become an indispensable assistant tool in clinical and medical research. With the rapid development of medical imaging technology, It has promoted the development of computer-aided diagnosis technology in medical research and clinical experiment, and the basis of computer-aided diagnosis technology is medical image processing. Therefore, medical image processing technology is one of the hot research fields of computer science and clinical medicine. With the rapid aging of population in modern society, brain atrophy is a common disease in the elderly, which leads to the increasing burden of medical workers. In order to solve this problem, we can make full use of the advantages of high speed, high efficiency and low cost of modern computer. Therefore, the computer-aided diagnosis of brain atrophy is studied in this paper. On the basis of putting forward the assistant diagnosis system of brain atrophy, the preprocessing of the original brain medical image is studied, then the extraction method of the brain parenchyma is discussed. Finally, the segmentation of the brain parenchyma and the measurement of the brain volume are emphatically discussed. The main research results are as follows: (1) by using modern image denoising technology, a set of denoising processes and methods suitable for brain medical image are summarized through experiments. (2) by analyzing the characteristics of brain medical image and the structure of human brain, The multi-threshold segmentation algorithm is used to extract the brain parenchyma. (3) by analyzing the shortcomings of Gao Si's mixed model and K-means 's two classical clustering algorithms to improve and fuse the segmentation of brain parenchyma. The fused GKA algorithm is used to segment the brain parenchyma. (4) two different methods of measuring the area and volume of the brain parenchyma are proposed and compared with each other. After using the clinical real brain medical images, the conclusion is drawn: the proposed process of medical image denoising and the algorithm of extracting brain parenchyma have achieved satisfactory experimental results; In the aspect of brain parenchyma segmentation, the result of GKA segmentation is more advanced than the traditional Gao Si mixed model and K-means clustering algorithm in every index, and in the area measurement of brain parenchyma, Because the two measurement methods are based on the different definitions of the area of the brain parenchyma, there are some differences between the two methods, but the results of the two methods have some clinical reference value.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;R742

【参考文献】

相关期刊论文 前10条

1 Yane Guo;Zengqiang Zhang;Bo Zhou;Pan Wang;Hongxiang Yao;Minshao Yuan;Ningyu An;Haitao Dai;Luning Wang;Xi Zhang;Yong Liu;;Grey-matter volume as a potential feature for the classification of Alzheimer's disease and mild cognitive impairment: an exploratory study[J];Neuroscience Bulletin;2014年03期

2 李小华;周毅;;广东省医院信息化建设状况与分析[J];现代医院;2013年09期

3 王英;曾光宇;;图像去噪算法研究[J];电脑与信息技术;2011年04期

4 王文志;;中国脑血管病防治研究现状和发展方向[J];中国现代神经疾病杂志;2011年02期

5 王敏琴;韩国强;涂泳秋;;基于形变模型的医学图像分割综述[J];医疗卫生装备;2009年02期

6 陈晓春;;基于K-Means和EM算法的聚类分析[J];福建电脑;2009年02期

7 陈寿文;李明东;;基于面向对象思想KMeans算法实现[J];滁州学院学报;2008年03期

8 黄振远;朱剑平;;自适应滤波LMS类算法探究[J];现代电子技术;2006年24期

9 刘扬;黄庆明;高文;叶齐祥;;自适应高斯混合模型球场检测算法及其在体育视频分析中的应用[J];计算机研究与发展;2006年07期

10 杨鸿波,时永刚,邹谋炎;一种非参数估计的活动围道图像分割方法[J];电子与信息学报;2004年12期



本文编号:2268809

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/shenjingyixue/2268809.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b833b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com