当前位置:主页 > 医学论文 > 神经病学论文 >

丙泊酚对癫痫患者皮层及皮层下脑电活动的影响

发布时间:2018-11-08 13:35
【摘要】:目的通过埋置于癫痫患者颅内的微电极,动态记录静脉泵注丙泊酚所致的意识消失过程中皮层及皮层下脑电信号的变化,分析丙泊酚对大脑不同部位脑电活动的影响,为确定丙泊酚产生麻醉效应的主导位点提供依据。方法:选择已在ROSA (robotized stereotactic assistant,机器人立体定向辅助系统)定位下行电极植入后并且择期行开颅癫痫病灶切除的癫痫患者26人,患者电极植入部位为额叶,海马,岛叶,颞叶,由于手术限制,每例患者电极植入的数量和部位不同,根据电极植入的部位分为4组,分别为A组(电极植入额叶)12例;B组(电极植入海马)12例;C组(电极植入岛叶)10例;D组(电极植入颜叶)12例。其中1例患者同时在额叶、海马、,岛叶和颠叶植入了微电极,1例患者在额叶,扣带回和杏仁核植入了微电极,1例患者在扣带回和丘脑前核植入了微电极。患者入室后开放外周静脉,常规监测心率(heart rate,HR)、无创收缩压(systolic blood pressure,SBP)、无创舒张压(diastolic blood pressure,DBP)、脉搏血氧饱和度(pulse oximetry,SP02)、BIS (bispectral index,脑电双频指数),连接高导联脑电监测仪后开始记录SEEG (stereoelectroencephalogram,立体定向脑电图),记录2分钟,靶控输注丙泊酚4-5ug/ml,待患者意识消失且BIS值下降到60时继续记录脑电信号2分钟,比较不同皮层及皮层下脑电频谱的变化,包括不同波段α、β、θ、δ波的能量变化。结果分析脑电频谱图,与清醒状态相比,麻醉状态下各个脑区α、β、θ、δ波的能量均增高,差异有统计学意义(P0.05);各个脑区能量的变化差异有统计学意义(P0.05),额叶的能量变化幅度最大,而颞叶能量的变化幅度最小;麻醉后,额叶和扣带回的频谱能量高于杏仁核,扣带回的能量高于丘脑前核。结论:静脉输注丙泊酚产生意识消失的麻醉效应时,额叶、海马、岛叶、颞叶的频谱能量变化较为明显,其中额叶变化最大,颞叶的变化最小;麻醉后,大脑皮层的脑电信号变化比皮层下核团更敏感。
[Abstract]:Objective to dynamically record the changes of cortical and subcortical EEG in the process of consciousness disappearance induced by intravenous infusion of propofol, and analyze the effect of propofol on brain electrical activity in different parts of the brain. It provides the basis for determining the dominant site of propofol to produce anesthetic effect. Methods: a total of 26 epileptic patients who had been placed in the ROSA (robotized stereotactic assistant, robot stereotactic assistant system (ROSA (robotized stereotactic assistant,) were selected. The electrodes were implanted in frontal lobe, hippocampus, island lobe and temporal lobe of 26 epileptic patients after selective craniotomy. Due to the limitation of operation, the number and location of electrode implantation were different in each patient. According to the site of electrode implantation, the patients were divided into 4 groups, 12 patients in group A (electrode implanted into frontal lobe). There were 12 cases in group B (electrode implanted into hippocampus), 10 cases in group C (electrode implanted into insular lobe) and 12 cases in group D (implanted into facial lobe). Microelectrodes were implanted in frontal lobe, hippocampus, insular lobe and apical lobe in 1 case, microelectrode in frontal lobe, cingulate gyrus and amygdala in 1 case, and microelectrode in cingulate gyrus and anterior thalamic nucleus in 1 case. After entering the room, peripheral veins were opened, heart rate (heart rate,HR), noninvasive systolic blood pressure (systolic blood pressure,SBP), noninvasive diastolic blood pressure (diastolic blood pressure,DBP), pulse blood oxygen saturation (pulse oximetry,SP02), BIS (bispectral index,) were monitored routinely. The SEEG (stereoelectroencephalogram, stereotactic EEG was recorded after connecting the high-lead EEG monitor) and recorded for 2 minutes. Target controlled infusion of propofol 4-5ugrml. The EEG signals were recorded for 2 minutes when the consciousness disappeared and the BIS value decreased to 60. The changes of the spectrum of EEG in different cortical and subcortical regions were compared, including the energy changes of 伪, 尾, 胃, 未 waves in different bands. Results compared with awake state, the energy of 伪, 尾, 胃, 未 waves in each brain region increased under anesthesia, and the difference was statistically significant (P0.05). The difference of energy in each brain area was statistically significant (P0.05), the change amplitude of energy in frontal lobe was the largest, and that in temporal lobe was the smallest. After anesthesia, the spectral energy of frontal lobe and cingulate gyrus was higher than that of amygdala, and the energy of cingulate gyrus was higher than that of prethalamic nucleus. Conclusion: when intravenous infusion of propofol produces anaesthetic effect of loss of consciousness, the changes of spectral energy in frontal lobe, hippocampus, island lobe and temporal lobe are more obvious, especially in frontal lobe and temporal lobe. After anesthesia, EEG changes in the cerebral cortex were more sensitive than those in the subcortical nucleus.
【学位授予单位】:中国人民解放军医学院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R742.1

【参考文献】

相关期刊论文 前10条

1 王虹;蔡慧明;戴体俊;邵东华;杭黎华;;异氟烷对家兔定量药物脑电图δ频段功率百分比的影响[J];华西药学杂志;2015年01期

2 王之遥;丁晓楠;吴劲松;黎元;杨忠;车薛华;张军;梁伟民;;全麻状态下静脉麻醉药丙泊酚对大脑功能连结性的影响[J];复旦学报(医学版);2014年02期

3 郭强;朱丹;陈俊喜;苏菊萍;华刚;谭红平;;机器人立体定向辅助系统在癫痫外科深部电极植入中的应用价值[J];立体定向和功能性神经外科杂志;2013年05期

4 袁建虎;张晓艳;李天佐;;丙泊酚静脉全麻致躁狂和攻击行为1例报告[J];北京医学;2013年08期

5 韩平平;蔡慧明;郭继龙;吴克俭;王琦;王立伟;戴体俊;;七氟烷对兔定量药物脑电图δ频段功率百分比的影响[J];中国药理学与毒理学杂志;2012年03期

6 吴新文;颜志伟;王治中;刘思洋;赵曼丽;王珊;;全身麻醉对大鼠中枢神经递质的影响[J];广东医学;2012年10期

7 刘玲玲;王立伟;吴克俭;戴体俊;;丙泊酚对人定量药物脑电图δ频段功率百分比的影响[J];徐州医学院学报;2010年01期

8 刘玲玲;王立伟;吴克俭;戴体俊;;依托咪酯对人定量药物脑电图δ频段功率百分比的影响[J];徐州医学院学报;2009年10期

9 谢松云;张振中;杨金孝;张坤;;脑电信号的若干处理方法研究与评价[J];计算机仿真;2007年02期

10 陈斌,刘斌;全身麻醉深度监测研究的新进展[J];国外医学.麻醉学与复苏分册;2004年05期

相关硕士学位论文 前1条

1 白冬梅;脑电信号的特性分析与特征提取[D];大连理工大学;2006年



本文编号:2318650

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/shenjingyixue/2318650.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户67616***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com