低频率电刺激对癫痫灶点转移的作用及初步机制研究
[Abstract]:Epilepsy is a chronic disease of the central nervous system due to the abnormal discharge of the cerebral cortex. The "range transfer" transfer of secondary focus refers to a new approach to the non-structural change of the brain regions other than the primary cause of epilepsy in the patients with epilepsy with the progression of the repeated onset of the primary focus. There are more than 30% of the patients with epilepsy in the long-term and recurrent primary and secondary development process. The transfer of the focal point may occur in a plurality of brain regions including the leaves, the frontal lobe, and the like. The mirror focus is referred to as a mirror focus point transfer when the site of the new hair-burning range is located at the corresponding mirror site in the opposite hemisphere of the primary fo cus, or the first range. At present, the probability of drug resistance in epileptic patients with focal point transfer is very high, and the prognosis of the operation is also very poor. Repeated episodes beyond the control of the long term cause a heavy burden on the patient, and the serious person is even disabled and fatal. The long-term treatment cost also has a heavy economic burden on the society. Therefore, it is necessary to find effective means of treatment for the transfer of the focal point. Deep brain stimulation (DBS) is a new promising treatment for the treatment of epilepsy. Pre-clinical and clinical studies have shown that DBS-specific target areas can significantly inhibit the onset of multiple types of epilepsy. In particular, that low-frequency electrical stimulation (LFS) show good tolerance, controllability and small tissue damage in the aspect of inhibition of epilepsy. The previous series of studies in our research group found that LFS can effectively inhibit the seizure and can inhibit the formation of epilepsy, such as the internal olfactory cortex, the pear-shaped cortex and the anterior nucleus of the thalamus. Therefore, we have speculated that LFS may be able to suppress the focal point transfer of the epilepsy. Therefore, in the first part of this dissertation, we mainly study the effect and characteristics of LFS on the formation process (focal point transfer) of the second cooking range, and explore the possible ways to inhibit the transfer of the focal point of the epilepsy. In the second part, we try to explore whether the focal point transfer can be predicted by a specific biomarker by analyzing the related protein changes in the animal model and the patients with epilepsy. In this study, we used the rat almonds nuclear power to ignite the epileptic model, and it was found that when the first range (right amygdala) was completely ignited to form the epileptogenic focus, the second range (the side of the mirror) was found. The occurrence of the left-hand amygdala is promoted; and by electrical damage experiments we have shown that this contribution is non-dependent and independent of the first focal point. Further, we find that LFS can delay the second range point-causing process directly on the first range point, indicating that the LFS may have the function of delaying the transfer of the stove point. the first range point is formed in the early stage to promote the second range point level, and the advanced stage is formed at the first range point, and the progress of the second range point level and the time duration after the discharge are promoted; and according to the research phenomenon, we begin to give the LFS at the later stage of the first range point formation, It is found that the LFS can only reduce the post-discharge duration of the second range, and can not delay the progression rate of the grade. At the same time, we further explore the case where the second range point is the ipsilateral hippocampus, similar, the first range point can also promote the second range point. For the first time in this study, we proposed that LFS can play an important role in the formation of the second range, and provide a theoretical basis for the treatment of focal point metastasis in the patients with epilepsy. The second part of low-frequency electrical stimulation involved in the shift of the focal point involved in the control of the protein and the clinical case of the shift of the focal point. in this study, we found that the first range point and the bilateral hippocampal chloride channel protein KCC2 were detected by the LFS intervention for the first range point formation, the LFS intervention of the first range point electrical ignition process and the complete blank (normal), and after the first range point was found to be formed, In both bilateral (bilateral amygdala) and bilateral hippocampus, the expression of KCC2 decreased relative to the brain tissue of completely blank animals, and the trend of this decline was reversed after the intervention of LFS. We found that there was a low level of expression of KCC2 in the brain tissue of epileptic patients with focal point metastasis, suggesting that the KCC2 might be a biomarker for the transfer of the point of range.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R742.1
【相似文献】
相关期刊论文 前10条
1 ;实验性短期电刺激引起的机体紊乱(英文)[J];中国临床康复;2002年08期
2 王磊;;电刺激下肌肉的离散时间模型[J];国外医学(生物医学工程分册);1987年04期
3 郭兴明,郑尔信,王淑仪;脉冲电刺激对植物生长的影响研究[J];生物医学工程学杂志;1993年04期
4 周维金,,陈立嘉,孟申,张皓;肌电反馈及肌电触发电刺激对偏瘫患者伸腕功能康复的价值[J];中国康复医学杂志;1996年05期
5 桂福如;电刺激在医疗中的应用与展望[J];中国医疗器械信息;1996年01期
6 刘小林,程钢,朱家恺,郑剑文;选择性脊神经后根切断术中神经小束电刺激阈值的临床分析[J];中国修复重建外科杂志;1996年03期
7 汤莹,杨勇骥,宋田斌,吴越,邰艳红,沙继宏,叶煦亭,郑尊;计算机控制的电刺激-超低温快速冷冻固定同步的研究[J];电子显微学报;2000年03期
8 ;长期电刺激引起的机体紊乱(英文)[J];中国临床康复;2002年10期
9 顾正,林家瑞,原芸,黄晓琳,华小梅;电刺激技术在运动康复中的应用研究[J];中国临床康复;2002年19期
10 何祥,张微;双侧电刺激并静注碱性成纤维生长因子对生长相关蛋白-43的影响[J];中国临床康复;2004年25期
相关会议论文 前10条
1 钱龙;吴东宇;;经颅直流电刺激及其临床应用[A];中国康复医学会第十三届全国脑血管病康复学术会议会议指南[C];2010年
2 李扬政;李建华;吴涛;;不同电刺激对提高健康人群肌力的研究进展[A];2011年浙江省物理医学与康复学学术年会暨康复新进展学习班论文汇编[C];2011年
3 张毓笠;王伯雄;;肌电刺激仪器及其在医学治疗中的作用[A];海峡两岸医疗仪器学术会议论文集[C];1995年
4 黄先森;;经颅直流电刺激在中风康复中的应用进展[A];2013浙江省物理医学与康复学学术年会暨第八届浙江省康复医学发展论坛论文集[C];2013年
5 朱晓瑾;张旭;王辉;阎立丽;;高频电刺激对周围神经传导阻断的动物实验研究[A];第十四届中国科协年会第17分会场:环境危害与健康防护研讨会论文集[C];2012年
6 戎科;;偏瘫步态的建模及动态电刺激康复研究[A];第十五届全国运动生物力学学术交流大会(CABS2012)论文摘要汇编[C];2012年
7 王红星;;重复频率电刺激[A];中国康复医学会肌电图与临床电生理学习班资料汇编[C];2012年
8 梅慧娴;成良;陈其才;;下丘局部电刺激对听神经元最佳频率和幅度敏感性的实时调制[A];中国生理学会第23届全国会员代表大会暨生理学学术大会论文摘要文集[C];2010年
9 王优芳;;低频脉冲电刺激配合手法按摩老年中风便秘的疗效观察[A];2013浙江省物理医学与康复学学术年会暨第八届浙江省康复医学发展论坛论文集[C];2013年
10 沈明;覃云凌;于建红;;经直肠电刺激取精术[A];中华医学会第八次全国男科学学术会议论文集[C];2007年
相关重要报纸文章 前7条
1 苏州市农科所 高建峰;电刺激 促美蛙生长[N];江苏科技报;2001年
2 本报记者 何英;缺电刺激埃及向“风光”迈进[N];中国能源报;2014年
3 ;加一点电刺激能做“清醒梦”[N];新华每日电讯;2014年
4 风信;治疗中风偏瘫双管齐下更有利[N];医药经济报;2002年
5 健康时报特约记者 黄学超;穴位电刺激 戒酒效果好[N];健康时报;2006年
6 本报记者 张晔 本报实习生 徐羽宏;意念控制:咱们瞧瞧地球上的“阿凡达”[N];科技日报;2014年
7 中国医科院整形外科医院麻醉科薛富善;综合治疗带状疱疹后遗神经痛[N];健康报;2006年
相关博士学位论文 前10条
1 余颖;大鼠海马区神经元对于轴突高频电刺激的响应及作用机制研究[D];浙江大学;2016年
2 曹艳;植入式脑机接口中微电刺激信息反馈和神经信息约简的研究[D];浙江大学;2016年
3 匡奕方;低频率电刺激对癫痫灶点转移的作用及初步机制研究[D];浙江大学;2016年
4 闫晓东;电刺激促进大鼠背根神经节神经元突起生长及机制研究[D];第四军医大学;2011年
5 蔡昌思;不同位置及模式电刺激诱发视网膜神经节细胞及视皮层的响应特性研究[D];上海交通大学;2011年
6 王凯;电刺激兔眼视神经诱发皮层电位的实验研究[D];北京大学;2008年
7 刘爱国;电刺激对豚鼠听神经兴奋性影响[D];复旦大学;2003年
8 王晓琳;电刺激大鼠上矢状窦血管源性头痛模型的机制研究[D];中国人民解放军军医进修学院;2010年
9 沈瑾;电刺激处理牛肉的差异蛋白质组学研究[D];山东农业大学;2013年
10 姜磊;偏头痛痛觉机制—电刺激清醒大鼠上矢状窦区硬脑膜后三叉神经核尾侧复合体基因表达谱的实验研究[D];中国人民解放军军医进修学院;2009年
相关硕士学位论文 前10条
1 薛磊;前视结节电刺激对熊蜂飞行控制的研究[D];浙江大学;2015年
2 史彬;采用血氧水平依赖—功能磁共振成像研究经颅直流电刺激调节吸烟渴求的神经机制[D];安徽医科大学;2015年
3 陈冬明;电刺激对稀有泩鲫(Gobiocrypris rarus)性腺发育及繁殖的影响[D];西南大学;2015年
4 任冬冬;重复性眶周交流电刺激对单眼剥夺小鼠视皮层可塑性的作用研究[D];天津医科大学;2015年
5 李雪;TMD患者电刺激后唾液皮质醇变化及与疼痛灾难化认知的相关关系[D];天津医科大学;2015年
6 黄新;视网膜上假体的电刺激脉冲及其波形的优化[D];天津医科大学;2012年
7 田园;低压电刺激对成熟过程中牦牛肉品质的改善[D];甘肃农业大学;2015年
8 卢嘉奕;高频电刺激指导下的肾动脉近段的肾交感神经射频消融术的实验研究[D];重庆医科大学;2015年
9 何康;电刺激与电损毁腹外侧视前区对大鼠睡眠活动的影响[D];河北师范大学;2016年
10 沈伟超;基于电刺激的鲤鱼机器人脑运动区定位及组织学研究[D];燕山大学;2016年
本文编号:2477704
本文链接:https://www.wllwen.com/yixuelunwen/shenjingyixue/2477704.html