不同材料不同时期引导的新生诱导骨的生物力学性能研究
本文关键词: GBR bio-oss β-磷酸三钙 CBCT 生物力学 出处:《泸州医学院》2013年硕士论文 论文类型:学位论文
【摘要】:目的:种植修复已成为临床缺失牙修复的一种常用方式,应用较为广泛。而种植区良好的骨条件是种植术成功的首要因素,但临床上骨质缺损、骨量不足的情况占大多数,需要进行骨增量来解决。近年来国内外对于引导骨再生技术(Guided bone regeneration GBR)的研究较多,包括各种影像学、组织学检测和多种材料的研究,其成骨效果已得到普遍认可,并已在临床广泛开展。但此技术引导的新生骨的生物力学性能的研究很少,本实验通过对不同时期不同材料引导的新生骨的生物力学性能研究,为新生骨成骨的质量、密度及各种生物力学参数得出结论,从而为临床种植时间及植骨材料的选择等提供参考数据。 方法:以12只成年Beagle犬为对象,分别在其双侧股骨髁预备3个6mm直径10mm高的圆柱形骨缺损,分别行GBR术,植入Bio-oss骨粉(B组)、β-磷酸三钙(β-TCP β-tricalcium phosphate)骨粉(C组)及自体骨屑(Z组)。术后三个月和六个月分别处死6只实验犬,取样制作各组标本。左侧三组标本进行锥形束CT(CBCT)扫描,观察成骨情况,比较各组新生骨骨密度;CBCT检测后的标本进行骨压缩试验,检测新生骨块的抗压能力;右侧标本行种植手术,检测即刻扭矩;之后进行骨块推出实验,检测新生骨与自然骨结合界面的抗剪切力。 结果:本实验成功建立了动物模型并制作了各组标本。在此基础上进行CT检测显示各组均有成骨,且6个月比3个月时骨密度高。压缩实验显示各组6个月组的抗压能力均优于3个月组;3个月组内,抗压能力Z组B组C组;6个月组内Z组C组、B组C组、Z组和B组无差异。扭矩测试显示,3个月组和6个月组内B组和Z组均无差异,,且都大于C组;平均扭矩只有3个月组的C组30N/cm,其它组均30N/cm。推出实验显示3个月组和6个月组内B组剪切力均大于C组;B组和C组各自剪切力比较6个月组均大于3个月组。 结论:bio-oss引导的新生骨与β-TCP引导的新生骨比较,其抗压能力更强,能为种植体提供更好的初期稳定作用,且在与自然骨的结合能力上更具优势。
[Abstract]:Objective: implant restoration has become a common method of clinical restoration of missing teeth and has been widely used. Good bone condition in implant area is the primary factor for success of implant, but clinical bone defect is one of the most important factors. Lack of bone mass is the majority. In recent years, there are many researches on guided bone regeneration (GBR), including all kinds of imaging, in order to solve the problem of bone increment. The effect of osteogenesis has been widely accepted and widely carried out in clinic, but the biomechanical properties of new bone guided by this technique are few. In this experiment, the biomechanical properties of new bone guided by different materials at different periods were studied, and the conclusion was drawn for the quality, density and biomechanical parameters of new bone osteogenesis. So as to provide reference data for clinical implant time and selection of bone graft materials. Methods: 12 adult Beagle dogs were used to prepare 3 cylindrical bone defects with 6mm diameter and 10mm height in their bilateral femoral condyles. GBR was performed respectively. Bio-oss bone powder group B). 尾 -TCP 尾 -tricalcium phosphate (尾 -TCP 尾 -tricalcium phosphate bone powder group C) and autogenous bone scraps group Z). 6 dogs were killed 3 and 6 months after operation. The left three groups of specimens were scanned by CT-CBCT to observe the osteogenesis and compare the bone density of new bone in each group. The bone compression test was performed on the specimens detected by CBCT, and the compressive capacity of the new bone was tested. The right specimens were implanted and the instant torque was detected. Then the bone block extrapolation experiment was carried out to detect the shear resistance of the interface between the new bone and the natural bone. Results: the animal model was successfully established and the specimens of each group were made. On the basis of this, CT examination showed that osteogenesis was found in all groups. The compression test showed that the anti-compression ability of the 6-month group was better than that of the 3-month group. Within 3 months, the ability to resist pressure in group Z, group B, group C; There was no difference between group Z and group B in 6 months. Torque test showed that there was no difference between group B and group Z in 3-month group and 6-month group, which was higher than that in group C; The mean torque was only 30 N / cm in group C and 30 N / cm in other groups. The results showed that the shear force of group B was higher than that of group C in 3 months and 6 months. The shear forces of group B and group C were higher than that of group 3. Conclusion compared with 尾 -TCP guided newborn bone, the new bone guided by the weight bio-oss has stronger anti-compression ability and can provide better initial stabilization for implants. Moreover, it has more advantages in the ability of combining with natural bone.
【学位授予单位】:泸州医学院
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:R783.1
【参考文献】
相关期刊论文 前10条
1 叶超群;纪树荣;钟兴明;;RANKL-RANK-OPG骨调节轴[J];首都体育学院学报;2006年06期
2 庄国铭;提高种植窝松质骨骨密度的生物力学意义探讨[J];福建医药杂志;2004年02期
3 朱安棣,周磊;Bio-oss骨粉对大鼠成骨细胞体外成骨效能的影响[J];广东牙病防治;2004年02期
4 范芹;徐世同;刘建国;吕聪;;3种特殊染色法显示种植体骨磨片组织学效果比较[J];广东牙病防治;2012年06期
5 左艳萍;汪永跃;傅云婷;周颖;;犬股骨髁松质骨挤压后愈合过程的X线影像观察[J];国际口腔医学杂志;2009年04期
6 郑晓辉,方秀斌;骨钙素的基础与应用研究进展[J];解剖科学进展;1999年04期
7 王华;邓春富;赵宝红;王飞;;胶原膜的应用及固定对人工骨粉成骨效果的影响[J];口腔颌面外科杂志;2010年01期
8 周文清;郭海波;吴燕平;陈璐;陈学军;康春慧;周永强;柳锋;;β-磷酸三钙复合自体骨移植修复种植牙骨缺损的临床应用[J];口腔医学;2011年07期
9 朱保玉;霍蓓蓓;曹选平;;葛根素应用于犬即刻种植后通过Micro-CT进行骨形态计量的实验研究[J];口腔医学研究;2012年07期
10 康博;刘成军;刘国红;汪竹红;谢嘉宁;张梓博;林丽娥;;牙种植体周围骨缺损引导骨组织再生后骨结合的生物力学研究[J];中国口腔种植学杂志;2009年01期
本文编号:1444318
本文链接:https://www.wllwen.com/yixuelunwen/swyx/1444318.html