3D打印表面多孔结构种植体的生物力学分析
发布时间:2018-03-21 07:28
本文选题:3D打印 切入点:孔隙结构 出处:《南昌大学》2017年硕士论文 论文类型:学位论文
【摘要】:目的:本实验将应用逆向工程技术以及计算机辅助设计的方法构建表面带孔隙结构的种植体3D打印CAD模型,并同时根据CBCT数据构建下前牙CAD模型,采用静态应力加载的方式,模拟种植体以及下前牙在颌骨内的功能性负荷,用三维有限元分析法探讨种植体表面孔隙结构设计的生物力学特点。方法:(1)选取一组正常CBCT数据导入Mimics 17.0软件提取数据,后运用Geomagics studio 11.0建立一段完整的下颌骨模型(包括外层厚度为2mm的皮质骨和内层的松质骨)和下颌中切牙模型;(2)利用3D扫描仪扫描48/18/33/10Straumann种植体获取相关数据,建立种植体CAD模型(RI);后根据该模型,运用Geomagics studio 11.0建立带孔隙结构的实心种植体CAD模型(PRI):种植体体部中央实心部分直径为2mm,表面孔隙结构层厚度为0.65mm,孔隙结构为环绕中央实心部分、与种植体长轴垂直,直径为0.7mm;(3)利用PRO/E 5.0软件进行下前牙、RI及PRI和颌骨模型的装配;(4)分别对三组模型进行轴向100N力,以及与种植体长轴成45°、颊舌方向120N的静态力的加载,加载点位于牙冠切缘中1/2处;(5)利用Ansys Workbench软件对两组模型进行分析,得到下前牙、RI、PRI以及颌骨的应力分布情况。结果:(1)在两种力加载时,三组模型的应力分布情况大致相同,且分布均匀,下前牙、RI及PRI的应力主要集中于颈部,下前牙根尖及RI、PRI根端应力分布最小,垂直力加载时的应力低于斜向力加载时的应力,PRI的最大等效应力大于RI的最大等效应力;(2)在两种力加载时,三组下颌骨的应力分布情况大致相同,且分布均匀,骨组织界面的等效应力均集中于与牙和种植体颈部接触的皮质骨和松质骨区,最大等效应力出现在下前牙唇侧颈缘皮质骨区和RI及PRI唇舌侧颈缘皮质骨区,RI组颌骨的最大等效应力低于PRI组颌骨的最大等效应力。结论:(1)种植体表面的多孔结构设计可以降低种植体表面的弹性模量;(2)在轴向力加载和斜向力加载的情况下,皮质骨对种植体表面形貌变化更加敏感,相比RI,PRI的应力更好地传导至颌骨,减少了“应力屏蔽”效应。
[Abstract]:Objective: to construct a 3D printed CAD model of implant with pore structure by reverse engineering and computer aided design, and at the same time to construct CAD model of lower anterior teeth based on CBCT data, and to use static stress loading method. In order to simulate the functional loading of implants and anterior teeth in the maxilla, the biomechanical characteristics of pore structure design on implant surface were studied by three-dimensional finite element analysis. Methods A group of normal CBCT data was selected to be imported into Mimics 17.0 software to extract data. Then Geomagics studio 11.0 was used to establish a complete mandibular model (including cortical bone with outer thickness of 2mm and cancellous bone in the inner layer) and a central mandibular incisor model, and a 3D scanner was used to scan 48 / 18 / 33 / 10Strauma implants to obtain relevant data. The implant CAD model was established, and then, according to the model, Geomagics studio 11.0 was used to establish the CAD model of solid implants with pore structure. The diameter of the central solid part of the implant was 2 mm, the thickness of the surface pore structure layer was 0.65 mm, and the pore structure was surrounded by the central solid part, perpendicular to the long axis of the implant. Three groups of models were subjected to axial force of 100N, static force of 45 掳to the long axis of implant and 120N of buccal and tongue direction, respectively, using PRO/E 5.0 software to assemble RI and PRI of lower anterior teeth and maxillary model. The stress distribution of the two groups of models was obtained by Ansys Workbench software. The results showed that the stress distribution of the three groups of models was approximately the same when the two forces were applied. The stress distribution of RI and PRI in anterior teeth was mainly concentrated in the neck, and the stress distribution in the tip and tip of anterior teeth was the least. The stress of vertical force is lower than that of oblique force. The maximum equivalent stress of PRI is larger than the maximum equivalent stress of RI. The equivalent stress at the interface of bone tissue was concentrated in the cortical and cancellous bone areas in contact with the neck of teeth and implants. The maximum equivalent stress of the maxilla in RI and RI groups was lower than that in PRI group. Conclusion: 1) the porous knot of implant surface is lower than the maximum equivalent stress of the maxillary bone in the lower lip side of the anterior tooth. Conclusion: the maximum equivalent stress of the maxilla in the RI group is lower than that in the PRI group. Conclusion: 1) the porous knot on the implant surface is lower than that in the PRI group. The structure design can reduce the elastic modulus of implant surface in the case of axial force loading and oblique force loading. The cortical bone is more sensitive to the surface changes of implants, and the stress of RII-PRI is better transmitted to the jaw bone, thus reducing the "stress shielding" effect.
【学位授予单位】:南昌大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R783.1;TP391.73
【参考文献】
相关期刊论文 前8条
1 刘帅;李湘霞;杨越;赵克;;多孔纯钛孔隙率及孔隙尺寸对蛋白吸附及成骨细胞分化的影响[J];中华口腔医学研究杂志(电子版);2015年03期
2 陈建宇;罗崇岱;张春雨;张弓;邱伟前;张志光;;计算机辅助设计及激光快速成形的纯钛髁突对重建颞下颌关节可行性探讨[J];中华口腔医学杂志;2014年10期
3 王德花;马筱舒;;需求引领 创新驱动——3D打印发展现状及政策建议[J];中国科技产业;2014年08期
4 胡洪成;卢松鹤;毋育伟;李箐;栾庆先;唐志辉;;电子束熔融技术制作的个性化根形种植体的制作精度评价[J];口腔医学研究;2014年06期
5 胡紫英;李美Y,
本文编号:1642857
本文链接:https://www.wllwen.com/yixuelunwen/swyx/1642857.html