利用高分子生物活性材料促进肩袖腱—骨愈合的实验研究
本文选题:肩袖损伤 + 腱-骨愈合 ; 参考:《上海交通大学》2014年博士论文
【摘要】:肩袖损伤是中老年人群中最常见的损伤之一,可引起肩关节疼痛、不稳定、肌力下降甚至活动障碍。尽管手术技术不断进步,肩袖修补的失败率仍达到20%~90%。骨质疏松、肩袖退变、肌肉萎缩以及缺损严重等因素削弱了损伤部位的自我修复能力,最终影响修补手术的效果。改变肩袖腱-骨止点损伤后反应性瘢痕愈合方式,促进腱-骨止点天然多层复合结构的重建是改善肩袖愈合的关键。目前利用组织工程支架提高患者内源性再生修复潜能以改善肩袖修补效果是当前国内外研究的热点。目的1.评估聚乳酸乙醇酸(PLGA)电纺纤维支架负载碱性成纤维细胞生长因子(b FGF)诱导肩袖腱-骨止点组织再生的能力;2.评估硅磷酸钙(CPS)生物活性陶瓷改变腱-骨界面骨矿含量、诱导腱-骨止点纤维软骨再生的能力;3.构建具有仿生结构的聚己内酯-壳聚糖(PCL-CS)混合纤维支架,评估活性支架诱导腱-骨止点多层结构重建和促进肩袖愈合的能力。方法1.利用乳液电纺技术制备具有芯核结构的PLGA纤维支架并负载b FGF,观察材料表征和b FGF释放,通过体外细胞培养观察b FGF-PLGA的细胞亲和力,并利用大鼠慢性肩袖损伤模型从组织形态学、生物力学评估b FGF-PLGA诱导组织再生的能力。2.利用CPS生物陶瓷加强修复大鼠的慢性肩袖损伤,从影像学、组织形态学和生物力学评估术后腱-骨界面骨矿含量的变化、组织再生的程度以及生物力学强度。3.利用双电纺技术,将CS纳米纤维与PCL微纤维结合,制备具有仿生结构的混合纤维支架PCL-CS(图1),观察材料表征及体外培养时细胞亲和力,并利用大鼠慢性肩袖损伤模型从影像学、组织形态学、生物力学评估评估PCL-CS诱导促进腱-骨止点多层结构重建的能力。结果1.b FGF-PLGA组成纤维细胞培养5天后与1天后或3天后的增殖差异有统计学意义(p0.05)。使用两种PLGA纤维支架加强修补的实验组在术后的各个时间点的纤维软骨量和胶原排布都优于对照组,而且b FGF-PLGA组在各个时间点的胶原排列较单纯PLGA组有显著改善(P0.05)。局部使用两种PLGA纤维支架在术后第4周显著提高了肩袖的极限负荷以及刚度,而在术后第8周,b FGF-PLGA组在腱-骨止点处的机械强度较单纯PLGA组也有显著增加(P0.05)。2.在各时间点CPS和羟基磷灰石(HA)组的骨密度(BMD)、组织骨密度(TMD)以及骨体积分数(BV/TV)均显著高于对照组。而且,CPS组的BMD、TMD和BV/TV在各时间点也都显著高于HA组。CPS生物陶瓷具有良好的降解能力和组织相容性。实验组腱-骨界面植入生物陶瓷材料在术后的各个时间点的纤维软骨面积和胶原结构都优于对照组,而且CPS组在各个时间点的新生纤维软骨面积也显著高于HA(P0.05)组。从生物力学检测结果来看,在植入材料术后4周时,两个实验组的极限负荷和刚度均优于对照组。此外,在术后第8周,CPS组在腱-骨止点处的机械强度显著高于HA组(P0.05)。3.细胞在PCL-CS支架表面培养3天和7天后与1天后相比增殖差异有统计学意义(P0.05)。在各时间点,PCL-CS组的BMD、TMD和BV/TV值均显著高于PCL组和对照组(P0.05),而PCL组和对照组间的BMD、TMD和BV/TV均无显著差异。使用PCL纤维支架加强修补的实验组在术后的各个时间点的纤维软骨量和胶原排布都优于对照组,而且PCL-CS组在各个时间点的番红异染面积均有显著优势(P0.05)。PCL纤维支架在术后第4周使肩袖的极限负荷以及刚度均有所增加,在术后第8周PCL-CS组腱-骨止点复合体的机械性能显著增加P0.05)。结论1.PLGA芯-壳纤维结构对b FGF的活性提供了很好的保护。b FGF-PLGA电纺纤维支架对成纤维细胞的增殖有促进作用。在大鼠的慢性肩袖损伤模型中,与单纯修复相比,在腱-骨止点处应用b FGF-PLGA可以提高腱-骨止点的力学强度,促进纤维软骨的再生和胶原的成熟。2.在大鼠的慢性肩袖损伤修补术中,在腱-骨界面植入CPS生物活性陶瓷可以增加界面骨矿含量,促进纤维软骨的再生和胶原的成熟,提高腱-骨止点的力学强度。3.CS纳米纤维与PCL微纤维结合可改善支架的细胞亲和力,促进细胞的粘附、增殖。在大鼠腱-骨止点处应用PCL-CS电纺混合纤维支架可以促进新骨形成,提高腱-骨止点的力学强度,促进纤维软骨的再生和胶原的成熟。
[Abstract]:The rotator cuff injury is one of the most common injuries in the elderly, can cause shoulder pain, instability, decreased muscle strength and activity disorder. Although the surgical techniques and rotator cuff repair failure rate reached 20%~90%. osteoporosis, rotator cuff degeneration, muscle atrophy and defect serious factors such as weakening the ability to repair itself the site of injury, and ultimately affect the repair effect. The change of rotator cuff tendon bone insertion reaction of scar healing after injury, promote tendon bone reconstruction for natural multilayer structure is the key to improve the rotator cuff healing. The use of tissue engineering scaffolds to improve patients with endogenous regeneration potential in order to improve the rotator cuff repair the effect is the focus of research at home and abroad. The 1. objective assessment of poly lactic acid glycolic acid (PLGA) electrospun fiber scaffolds loaded with basic fibroblast growth factor (B FGF) induced rotator cuff tendon bone insertion tissue The capacity of 2.; evaluation of silicon calcium phosphate (CPS) bioactive ceramic change of tendon bone interface bone tendon bone mineral content, induced by the ability to stop the regeneration point of cartilage; 3. built with bionic structure Polycaprolacton chitosan (PCL-CS) hybrid scaffolds, to evaluate the activity of stent induced tendon bone insertion multilayer structure reconstruction and promote the ability of rotator cuff healing. PLGA fiber scaffolds 1. by emulsion electrospinning preparation with core structure and method of load B FGF, observe the material characterization and release of FGF B, B FGF-PLGA cells cultured in vitro by affinity cells, and the use of chronic rotator cuff injury rats from histomorphology biomechanical evaluation of B, FGF-PLGA induced tissue regeneration ability of.2. using CPS bioceramic enhancing chronic rotator cuff repair from rats, imaging, histological changes and biomechanical evaluation of postoperative tendon bone interface bone mineral content, The degree of tissue regeneration and biomechanical strength of.3. using electric double spinning technology, combining the CS and PCL micro nano fiber fiber, preparation of hybrid scaffolds of PCL-CS bionic structure (Figure 1), to observe the training materials characterization and in vitro cell affinity, and the use of chronic rotator cuff injury model of rats from imaging, tissue morphology biomechanical evaluation, PCL-CS induced ability to promote tendon bone insertion of multilayer structure reconstruction. Results the difference was statistically significant proliferation 5 days later and 1 days or 3 days after the culture of 1.b FGF-PLGA fibroblasts (P0.05). Using two PLGA fiber scaffolds to strengthen the repair of experimental group at each time point after operation of the fibrous cartilage the amount and arrangement of collagen were better than the control group, B and FGF-PLGA were significantly improved at each time point of the collagen than PLGA group (P0.05). The local use of two types of PLGA fiber scaffolds after fourth Week to significantly improve the ultimate load and the rigidity of the rotator cuff, and eighth weeks after operation, B group FGF-PLGA in the mechanical strength of tendon bone insertion compared to simple PLGA group were increased significantly (P0.05).2. at each time point CPS and hydroxyapatite (HA) bone density group (BMD), organization bone mineral density (TMD) and bone volume fraction (BV/TV) were significantly higher than the control group. Moreover, the CPS group of BMD, TMD and BV/TV at each time point were significantly higher than those in HA group.CPS bioceramic has good biodegradability and biocompatibility. Experimental group tendon bone interface implanted bioceramic materials in various time points after operation, the area of cartilage and collagen structure are better than the control group, and CPS group in the new area of cartilage at each time point was significantly higher than that in HA (P0.05) group. The biomechanical test results, in 4 weeks after implant surgery, two limit load and stiffness of the experimental group excellent In the control group. In addition, after eighth weeks, CPS group in the mechanical strength of the tendon bone insertion was higher than that in group HA (P0.05).3. cells were cultured in PCL-CS scaffolds for 3 days and 7 days compared with 1 days of proliferation was statistically significant (P0.05). At each time point, PCL-CS group BMD, TMD and BV/TV were significantly higher than that of PCL group and control group (P0.05), and between PCL group and control group BMD, there were no significant differences between TMD and BV/TV. Using PCL fiber scaffolds to strengthen the repair of experimental group at each time point after operation, the amount of cartilage and collagen fiber arrangement are better than those of the control group and PCL-CS group at each time point of the safranin metachromatic area has significant advantage (P0.05) increased.PCL fiber scaffolds after fourth weeks the limit load of the rotator cuff and stiffness were significantly increased in P0.05 mechanical properties after eighth weeks in the PCL-CS group of tendon bone insertion complex). Conclusion 1.PLGA core shell fiber node The B activity of FGF provides good protection of.B FGF-PLGA electrospun fibrous scaffold has a promoting effect on the proliferation of fibroblasts. In chronic rotator cuff injury model in rats, compared with the simple repair, the tendon bone insertion point of the application of B FGF-PLGA can improve tendon bone insertion of Li Xueqiang and promote cartilage regeneration and collagen maturation of.2. in chronic rotator cuff injury repair in rats at the tendon bone interface with CPS bioactive ceramics can increase bone mineral content of the interface, promote cartilage regeneration and collagen maturation, improve the combination of support can improve the cell affinity of tendon bone insertion Li Xueqiang of.3.CS nanofiber and PCL micro fiber, promote cell adhesion, proliferation in rat tendon bone insertion application of electrospun PCL-CS hybrid scaffolds can promote new bone formation, improve the mechanical strength of the tendon bone insertion, promote the regeneration of cartilage And the maturation of collagen.
【学位授予单位】:上海交通大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:R687;R318.08
【共引文献】
相关期刊论文 前10条
1 商培洋;叶庭均;王蕾;;肩袖补片治疗肩袖损伤研究现状[J];国际骨科学杂志;2014年03期
2 王琳;;运动相关骨腱结合部损伤动物模型研究进展[J];北京体育大学学报;2014年07期
3 安涛;陈庆玉;李苏;周英勇;赵志蓉;彭磊;;柠檬酸钙复合材料促进骨腱愈合的实验研究[J];创伤外科杂志;2015年03期
4 王立曼;王妍;段翠密;王海滨;王常勇;;两种肝脏全器官脱细胞基质制备方法的比较[J];解放军医学杂志;2014年04期
5 马丽;;微囊化载体制剂治疗糖尿病溃疡的实验研究[J];海南医学院学报;2014年08期
6 陈寅;杨贤罡;刘阳;;优秀游泳运动员肩关节疼痛的主要病因分析——冈上肌肌腱炎[J];辽宁体育科技;2014年05期
7 向磊;杨俊涛;;生长因子在动物肌腱损伤修复中的机制和治疗进展[J];临床骨科杂志;2014年06期
8 叶维;包倪荣;;生物支架在肩袖损伤修复应用中的研究进展[J];医学研究生学报;2015年04期
9 费文勇;郭卫春;;肩袖损伤修复技术的研究现状[J];临床骨科杂志;2015年04期
10 高晓嶙;白云飞;王若晗;张晓兰;;肱二头肌长头肌腱过度使用中相关生长因子蛋白表达规律的研究[J];体育科学;2014年09期
相关博士学位论文 前10条
1 罗晓;不同来源细胞外基质外科补片的生物学性质研究[D];华中科技大学;2013年
2 王小军;去细胞化的肝脏支架在细胞移植中的应用研究[D];第三军医大学;2013年
3 杨运发;富血小板血浆(PRP)对肌腱干细胞生物学影响的研究[D];南方医科大学;2013年
4 茅泳涛;血小板裂解液复合脂肪来源干细胞促进腱骨愈合的实验研究[D];苏州大学;2014年
5 罗晓;不同来源细胞外基质外科补片的生物学性质研究[D];华中科技大学;2013年
6 瞿瑾;胰酶化和钙化对异体滑膜内肌腱与骨隧道愈合作用研究[D];中南大学;2014年
7 蒋励;食蟹猴模型中sC-MSCs定向分化修复软骨缺损的实验研究[D];复旦大学;2012年
8 木拉提·热夏提;毛囊干细胞和异种脱细胞支架复合培养方法及组织相容性研究[D];新疆医科大学;2014年
9 高晓嶙;过度运动中肌腱细胞增殖、凋亡与相关生长因子蛋白表达特征的研究[D];北京体育大学;2014年
10 应志敏;PDGF-bb联合BMP-2生长因子对骨膜来源干细胞在二维培养和可注射水凝胶Gelatin-Hpa中增殖及成骨分化能力的影响研究[D];浙江大学;2015年
相关硕士学位论文 前10条
1 胡琨;不同载荷强度对骨腱结合部结构的影响[D];北京体育大学;2013年
2 郁贤舜;富血小板血浆凝胶对前交叉韧带重建术后腱—骨界面愈合影响的形态学观察[D];安徽医科大学;2013年
3 刘俊;血小板衍化生长因子对兔膝前交叉韧带重建术后早期腱骨愈合影响的实验研究[D];南华大学;2013年
4 周胜涛;自制肌腱骨吻合装置修复肌腱末端损伤的动物实验研究[D];南华大学;2013年
5 周鑫;脱细胞猪角膜基质载体支架的制备及其与人角膜基质细胞的生物相容性研究[D];中国海洋大学;2013年
6 李万里;去细胞犬喉支架的体内埋植实验[D];第四军医大学;2013年
7 陈奇;肩袖冈上肌骨—肌腱结合部损伤愈合模型的实验研究[D];第二军医大学;2013年
8 曾子腾;MLRS、SRμCT对骨腱连接点结构的评估及LIPUS对其愈合的影响[D];中南大学;2013年
9 李绍群;磺酸化丝素蛋白/羟基磷灰石多孔支架的制备及评价[D];江苏科技大学;2013年
10 崔亮;双层骨—膑腱—骨重建前交叉韧带术后的两种康复方案下移植物组织学及生物力学的相关研究[D];河北医科大学;2014年
,本文编号:1731582
本文链接:https://www.wllwen.com/yixuelunwen/swyx/1731582.html