多孔钽铌合金的制备与生物相容性研究
本文选题:钽 + 铌 ; 参考:《中南大学》2013年博士论文
【摘要】:1绪论 骨科生物材料在近半个世纪经历了飞速发展,但作为应用最为广泛的内植物,传统金属材料仍面临应力遮挡和骨—植入物界面结合两大问题,普遍存在于脊柱、关节、创伤等领域。以多孔钽为代表的多孔金属是近年来出现的一种新型骨科生物材料,具有与松质骨骨小梁结构相似的孔隙结构,适合骨组织长入的孔隙大小及与骨组织相近的弹性模量,是目前生物材料领域的研究热点。铌具有良好的生物相容性,且可通过上调碱性磷酸酶活性增强成骨细胞功能表达,促进成骨。本研究通过泡沫浸渍技术与粉末冶金技术制备具有良好孔隙结构及生物力学性能的多孔钽铌合金,并通过体外与MC3T3一E1细胞共培养及体内植入实验评价其组织相容性,为多孔钽铌合金的临床应用提供实验依据。 2多孔钽铌合金的制备及性能 目的:制备多孔钽铌合金并测定其理学性能。 方法:结合粉末冶金法和胶体浸渍法,通过成分设计制备三种不同Nb含量(5%,10%以及15%)的Ta-Nb多孔金属并通过SEM,光学显微镜,力学试验机等分别对材料的孔隙度,孔隙结构,微观结构,力学强度以及弹性模量进行观察和表征。通过优化和选择,找到适合的Ta-Nb多孔合金成分以及制备该材料的最优化的工艺。 结果:通过SEM和光学显微镜以及密度测试,三种成分的多孔材料兼具有55%左右的孔隙率,开孔率在95%左右,孔隙大小在400μm左右,这些参数与材料的成分变化关系不大;通过压缩试验和抗弯试验,发现随着Nb含量的增加弹性模量和压缩强度在10%含量的Nb时,抗压强度为83.43MPa,弹性模量为2.54GPa,压缩曲线显示该材料具有良好的应力塑性平台。 结论:通过粉末冶金和胶体浸渍法成功制备出Ta-Nb多孔材料。在Nb含量10%的多孔钽铌合金具有最佳的孔隙结构、开孔率及力学性能指标。 3多孔钽铌合金体外对成骨细胞的分子相容性研究 目的:探讨多孔钽铌合金对小鼠成骨细胞系MC3T3-E1的分子相容性。 方法:通过不同浓度多孔钽铌合金浸提液对小鼠成骨细胞系MC3T3-E1的毒性试验探讨其安全性。将MC3T3-E1细胞分别种植在多孔钽铌合金、多孔钽及致密钽铌合金表面,进行吖啶橙染色、细胞计数及扫描电镜观测细胞在三种材料表面的粘附及增殖情况。应用Q-PCR技术测定MC3T3-E1与三种材料共培养后对Ⅰ型胶原、ALP、 OC、Ki67、Intergin β1、TGF-β和Cbfα-1mRNA的表达情况,从分子水平探讨多孔钽铌对成骨细胞功能相关基因的影响。 结果:材料浸提液细胞毒性实验结果显示多孔钽铌浸提液对小鼠成骨细胞系MC3T3-E1的毒性级别为0-Ⅰ级,属于无毒范围。多孔钽铌浸提液对MC3T3-E1的增殖无抑制作用,与阴性对照组比较无显著性差异。多孔钽铌和多孔钽对成骨细胞的粘附能力高于致密钽铌合金(P0.05)。MC3T3-E1细胞在多孔钽铌及多孔钽表面的增殖情况同样优于致密钽铌合金,细胞计数结果显示有显著性差异(P0.05)。电镜扫描可见MC3T3-E1在多孔钽铌合金及多孔钽表面生长良好,细胞数量随时间延长而增加,并向孔隙内部生长。Intergin β1. Cbfα1、 TGF-βmRNA在多孔钽铌合金及多孔钽表面细胞中表达强于致密钽铌合金,多孔钽铌合金表面细胞对ALPmRNA的表达强于另外两组,差异均有统计学意义。 结论:多孔钽铌对小鼠成骨细胞MC3T3-E1无毒性,可以促进MC3T3-E1的粘附、分化和增殖,生物相容性不亚于多孔钽。多孔钽铌可上调Integrin β1、Cbfα1、TGF-βmRNA的表达,程度与多孔钽相近,而对ALPmRNA的上调水平甚至超过多孔钽,在分子水平提供了多孔钽铌对小鼠成骨细胞作用的依据。 4多孔钽铌合金体内组织相容性研究 目的:比较多孔钽铌合金、多孔钽和致密钽铌合金的骨整合能力,探讨其作为体内植入物的可行性。 方法:将多孔钽铌合金、多孔钽和致密钽铌合金棒植入新西兰大白兔股骨远端,分别在2w、6w、12w行X线检查,在6w及12w取材后进行扫描电镜和硬组织切片检查,12w时间点取材行推出实验。 结果:三组材料周围软组织均未见明显排异及炎症反应,各时间点X线片均未见松动、移位,其中多孔钽铌合金组及多孔钽组6w及12w时在材料两端均有成骨现象,而致密钽铌合金未见成骨。扫描电镜观察可见6w时多孔钽铌合金及多孔钽表面有钙磷沉积,材料-骨结合结合面无纤维膜间隔,结合较为紧密,材料孔隙内部同样有新生骨小梁形成;12w时两种材料与骨质结合更加紧密,表面孔隙内为新生骨组织填充,金属小梁与骨小梁之间形成紧密地嵌合;致密钽铌合金与骨组织之间可见纤维组织膜。50μm厚带材料硬组织切片显微镜下观察可见多孔钽铌及多孔钽与兔股骨髁骨质结合紧密,表面孔隙内有大量新生骨组织。推出实验中,致密钽铌合金组平均最大推出力为94.2±17.9N,与多孔钽铌合金组(328.9±35.3N)及多孔钽组(316.6±22.9N)之间有显著性差异,多孔钽铌合金组与多孔钽组之间无显著性差异。 结论:多孔钽铌可在体内与骨质形成牢固的骨整合,且有大量新生骨组织长入孔隙内部,形成牢固的嵌合,体内组织相容性良好,适合作为体内植入物。
[Abstract]:1 Introduction
The Department of orthopedics biomaterials have experienced rapid development in the last half century, but as the most widely used internal plants, the traditional metal materials still face two major problems, such as stress occlusion and bone implant interface combination, which are common in the fields of spine, joint and trauma. Porous tantalum as the generation of porous metals is a new type of bone in recent years. The biological material, which has a pore structure similar to the trabecular structure of the cancellous bone, is suitable for the size of the bone tissue and the elastic modulus similar to the bone tissue. It is a hot spot in the field of biological materials. Niobium has good biocompatibility, and can enhance the function expression of osteoblast by increasing the activity of alkaline phosphatase and promote the function expression of osteoblast. The porous tantalum niobium alloy with good pore structure and biomechanical properties was prepared by foam impregnation and powder metallurgy, and the histocompatibility was evaluated by co culture with MC3T3 E1 cells in vitro and in vivo implantation, which provided experimental basis for the application of porous tantalum niobium alloy in bed.
Preparation and properties of 2 porous tantalum niobium alloy
Objective: to prepare porous tantalum niobium alloy and determine its physical properties.
Methods: three kinds of Ta-Nb porous metal with different Nb content (5%, 10% and 15%) were prepared by means of powder metallurgy and colloid impregnation. The porosity, pore structure, microstructure, mechanical strength and elastic modulus of the materials were observed and characterized by SEM, optical microscope and mechanical test machine. Select the suitable Ta-Nb porous alloy composition and optimize the preparation process.
Results: through SEM, optical microscope and density test, the porous material of three components also has about 55% porosity, the opening rate is about 95% and the pore size is about 400 mu m. These parameters have little relation with the change of the composition of the material. By compression test and bending test, the modulus of elasticity and compression with the increase of Nb content are found. When the strength is 10% Nb, the compressive strength is 83.43MPa and the elastic modulus is 2.54GPa. The compression curve shows that the material has good stress plastic platform.
Conclusion: porous Ta-Nb materials have been successfully prepared by powder metallurgy and colloidal impregnation. The porous tantalum niobium alloy with a content of 10% of Nb has the best pore structure, opening rate and mechanical properties.
3 study on the molecular compatibility of porous tantalum niobium alloy for osteoblasts in vitro
Objective: To investigate the molecular compatibility of porous tantalum niobium alloy on mouse osteoblast cell line MC3T3-E1.
Methods: the toxicity of different concentration of porous tantalum niobium alloy extract to mouse osteoblast MC3T3-E1 was studied. The MC3T3-E1 cells were planted on the porous tantalum niobium alloy, porous tantalum and compact tantalum niobium alloy surface, stained with acridine orange, cell count and scanning electron microscopy to observe the adhesion of the cells on the surface of the three materials. Q-PCR technique was used to determine the expression of type I collagen, ALP, OC, Ki67, Intergin beta 1, TGF- beta and Cbf alpha -1mRNA after co culture of MC3T3-E1 and three materials. The effects of porous tantalum and niobium on the function related genes of osteoblasts were investigated at the molecular level.
Results: the toxicity test results showed that the toxicity level of the porous tantalum niobium extract to the mouse osteoblast line MC3T3-E1 was 0- I, and it was non toxic. The porous tantalum niobium extract had no inhibitory effect on the proliferation of MC3T3-E1, and there was no significant difference between the porous tantalum niobium extract and the negative control group. The proliferation of P0.05.MC3T3-E1 cells on tantalum niobium alloy (tantalum niobium alloy) and porous tantalum on porous tantalum niobium and porous tantalum surface was also better than that of compact tantalum niobium alloy. The cell count results showed significant difference (P0.05). The electron microscope scan showed that MC3T3-E1 grew well on porous tantalum niobium alloy and porous Tantalum surface, and the number of cells increased with time. .Intergin beta 1. Cbf alpha 1 was grown into the pores, and TGF- beta mRNA was strongly expressed in the porous tantalum niobium alloy and porous tantalum surface cells. The surface cells of the porous tantalum niobium alloy were stronger than the other two groups, and the difference was statistically significant.
Conclusion: porous tantalum niobium has no toxicity to mouse osteoblast MC3T3-E1. It can promote the adhesion, differentiation and proliferation of MC3T3-E1, and the biocompatibility is no less than porous tantalum. Porous tantalum niobium can up regulate the expression of Integrin beta 1, Cbf a 1, TGF- beta mRNA, and the level of ALPmRNA is even higher than that of porous tantalum. The effect of porous tantalum niobium on mouse osteoblasts was studied.
Study on the tissue compatibility of 4 porous tantalum niobium alloy in vivo
Objective: To compare the osseointegration ability of porous tantalum niobium alloy, porous tantalum and compact tantalum niobium alloy, and to explore its feasibility as an implant in vivo.
Methods: the porous tantalum niobium alloy, porous tantalum and compact tantalum niobium alloy rods were implanted into the distal femur of New Zealand white rabbits. The X-ray examination was performed on 2W, 6W and 12W respectively. The scanning electron microscopy and hard tissue section examination were carried out after the 6W and 12W were obtained, and the experiment was carried out at the time point of 12W.
Results: there was no obvious rejection and inflammatory reaction in the three groups of soft tissues around the materials. No loosening and displacement was found at all time points. The porous tantalum niobium alloy group and the porous tantalum group 6W and 12W had osteogenesis at both ends of the material, but the compact tantalum niobium alloy had no osteogenesis. The porous tantalum niobium alloy and the porous tantalum table were observed at 6W by scanning electric microscope. There are calcium and phosphorus deposits in the surface, and the combination of material and bone binding surface without fibrous membrane spacer, and closer together, and the formation of new bone trabecula in the material pores; in 12W, the two materials are closer to the bone, the surface pores are filled with the new bone tissue, the metal trabecula and the bone trabecula form closely chimerism; the compact tantalum niobium alloy and bone The fibrous tissue membrane.50 mu m thick band material can be seen between the tissues and the hard tissue microscope. The porous tantalum and niobium and porous tantalum are closely associated with the rabbit femoral condyle bone, and there are a large number of new bone tissue in the surface pores. In the experiment, the average maximum force of the compact tantalum niobium alloy group is 94.2 + 17.9N and the porous tantalum niobium alloy group (328.9 + 35.3N). There was a significant difference between porous tantalum group and (316.6 + 22.9N), and there was no significant difference between porous tantalum niobium alloy group and porous tantalum group.
Conclusion: porous tantalum and niobium can form solid bone with bone in the body, and a large number of new bone tissues grow into the pores, forming a solid chimerism and good histocompatibility in the body. It is suitable to be used as an implant in the body.
【学位授予单位】:中南大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:R318.08
【相似文献】
相关期刊论文 前10条
1 刘维钢,史晨辉,孙建华,董金波,杜靖远,郑启新,郭晓东;去抗原异种松质骨的生物相容性研究[J];农垦医学;2005年03期
2 全仁夫;杨迪生;苗旭东;李伟;吴晓春;汪宏斌;;二氧化锆梯度复合羟基磷灰石的生物相容性研究[J];中国修复重建外科杂志;2006年05期
3 王碧,王坤余,但卫华,张廷有;胶原蛋白-葡甘聚糖-软骨素(CKCs)共混膜的生物相容性研究[J];中国皮革;2005年13期
4 张凯;王大平;朱伟民;刘建全;;骨髓间充质干细胞与纳米羟基磷灰石支架材料的体外相容性研究[J];中国临床解剖学杂志;2011年02期
5 张健;安洪;蒋电明;周爱国;;纳米羟基磷灰石/聚酰胺复合材料人工肱骨头的体内生物相容性研究[J];重庆医科大学学报;2005年06期
6 刘斌;张基昌;陈宏勃;宋显晶;;生物可降解冠状动脉支架涂层材料聚乙二醇-聚乳酸-聚谷氨酸共聚物的生物相容性研究[J];中国实验诊断学;2006年09期
7 苗波;姜德志;;不同涂层镁合金兔下颌骨植入的生物相容性研究[J];牡丹江医学院学报;2009年02期
8 田潂鹏;向慧玲;李亚静;吕晓龙;;改性聚偏氟乙烯膜的生物相容性研究[J];生物医学工程与临床;2010年03期
9 李立华,焦延鹏,李志忠,丁珊,邓德礼,周长忍;聚乳酸壳聚糖复合支架材料的生物相容性研究[J];中国生物医学工程学报;2005年04期
10 王放;冯超;周庆海;王海河;李凡;;新型生物材料改性聚碳酸亚丙酯的制备及其生物相容性研究[J];中国实验诊断学;2007年08期
相关会议论文 前10条
1 徐艳姬;崔春翔;申玉田;何云;王如;王新;;K_2Ti_6O_(13)Ti合金的生物相容性研究[A];第十二届全国电子显微学会议论文集[C];2002年
2 程亮;郭圣荣;;吡喹酮皮下植入剂的体内释放考察及组织相容性研究[A];2008年中国药学会学术年会暨第八届中国药师周论文集[C];2008年
3 戚玉敏;崔春翔;;钛合金表面原位自生钛酸钾生物薄膜的体外生物相容性研究[A];2005年中国机械工程学会年会论文集[C];2005年
4 赵红;邢滨;齐民;杨大智;;医用不锈钢表面微孔丙交酯乙交酯共聚物薄膜的制备及其生物相容性研究[A];大连理工大学生物医学工程学术论文集(第2卷)[C];2005年
5 薛恩兴;徐华梓;彭磊;;天然海洋碳酸钙骨组织工程修复材料的生物相容性研究[A];2007年浙江省医学会骨科学学术会议暨浙江省抗癌协会骨软肿瘤学术会议论文汇编[C];2007年
6 巨勇;李研;张祯;胡君;李伟娜;李广涛;;新型含甾体/三萜骨架功能分子的合成与性能研究[A];第六届全国化学生物学学术会议论文摘要集[C];2009年
7 郑小龙;张西正;胡平;李瑞欣;张春秋;王贵林;;聚羟基丁酸酯/羟基磷灰石可吸收骨折内固定材料性能研究[A];天津市生物医学工程学会2006年学术年会论文摘要集[C];2006年
8 叶迅;赵元;唐光昕;;复合氧化及水热沉淀法制备纯钛表面梯度生物活性涂层的生物相容性研究[A];中国神经科学学会第六届学术会议暨学会成立十周年庆祝大会论文摘要汇编[C];2005年
9 宋凤兰;杨帆;张永明;杨轶群;汪朝阳;;干扰素微球的生物相容性研究~8[A];2007年全国生化与生物技术药物学术年会论文集[C];2007年
10 张民;卫小春;王建生;;可注射性含硅磷酸钙骨水泥促进成骨的实验研究[A];第18届中国康协肢残康复学术年会论文选集[C];2009年
相关重要报纸文章 前10条
1 记者 冯海波;医用镁合金极具发展前景[N];广东科技报;2011年
2 王镐;医学用钛量增长明显[N];中国有色金属报;2011年
3 民泾;EPCs捕获技术改善支架生物相容性[N];医药经济报;2003年
4 通讯员 姚春雨、钱勇 记者 范又;新型生物可降解性血管内支架研制成功[N];光明日报;2003年
5 凤慧;全球医药塑料产量5年内将达45亿公斤[N];中国包装报;2010年
6 刘霞;紧跟技术进步的脚印[N];科技日报;2010年
7 ;固定骨折“生物钉”成新宠[N];医药经济报;2001年
8 李世英 刘碧玛;平凡背后的辉煌[N];科技日报;2003年
9 崔小明;聚磷腈要抓紧开发利用[N];中国化工报;2002年
10 本报记者 李晓;选择哪一种假牙?[N];苏州日报;2005年
相关博士学位论文 前10条
1 苗惊雷;多孔钽铌合金的制备与生物相容性研究[D];中南大学;2013年
2 袁勃;两性离子嵌段共聚物结构设计、制备及其生物相容性研究[D];南京大学;2012年
3 丁仲如;新型全镍钛合金室间隔封堵器的研制及动物实验[D];第二军医大学;2006年
4 杨春露;珍珠层人工骨骨诱导作用及相关机制实验研究[D];第一军医大学;2007年
5 齐峥嵘;微弧氧化表面处理的ZK60镁合金在大鼠体内的降解行为及生物相容性研究[D];中国人民解放军军医进修学院;2013年
6 王嫦君;干眼症缓释泪道栓设计关键技术及其相关性能初步研究[D];浙江大学;2011年
7 陈鹏;PHEMA/SiO_2/n-HA凝胶膜的制备和生物相容性研究[D];福建医科大学;2010年
8 肖星;镁合金(AZ60)Ca-P涂层的生物相容性初步研究[D];吉林大学;2013年
9 陶运明;二羟基铁/肝素纳米颗粒-VEGF修饰促进去细胞血管基质的生物相容性和内皮化的研究[D];中南大学;2013年
10 周康;可携式人工泵肺的生物相容性评价[D];中南大学;2011年
相关硕士学位论文 前10条
1 姜海英;氟处理AZ31B生物可降解镁合金的生物相容性研究[D];中国医科大学;2009年
2 王上元;载阿伦磷酸钠丙烯酸骨水泥的生物相容性研究[D];中南大学;2008年
3 孙秀娟;类人胶原蛋白—透明质酸血管支架的性能及生物相容性研究[D];西北大学;2009年
4 邱晓霞;超高分子量聚乙烯纤维的生物相容性研究[D];郑州大学;2005年
5 祁军;壳聚糖/纳米羟基磷灰石分层复合支架的生物相容性研究[D];华中科技大学;2008年
6 邱垂源;人MSC灌注生物反应器培养及其与生物材料生物相容性研究[D];暨南大学;2005年
7 卫敏仲;镍钛合金表面氮化钛陶瓷修饰及其生物相容性研究[D];天津医科大学;2006年
8 李源莹;微弧氧化陶瓷膜与骨髓间充质干细胞的生物相容性研究[D];华中科技大学;2008年
9 张世亮;氧化镁涂层AZ31B镁合金材料生物相容性研究[D];中国医科大学;2008年
10 张琦;新型医用高氮无镍奥氏体不锈钢的力学及生物相容性研究[D];南京理工大学;2008年
,本文编号:1839035
本文链接:https://www.wllwen.com/yixuelunwen/swyx/1839035.html