基于局部均值分解与样本熵的脑电信号特征提取与分类
本文选题:脑机接口 + 特征提取 ; 参考:《计算机工程》2017年02期
【摘要】:针对运动想象脑电信号的识别问题,提出一种改进的脑电信号特征提取与分类方法。利用局部均值分解算法将原始信号分解为一系列乘积函数(PF)分量,根据μ节律和β节律范围内的脑电信号剔除无意义的PF分量。通过特征时间选择原则,选取4 s~6 s运动想象脑电信号作为分类数据,分别计算C_3,C_4导联信号二阶和三阶PF分量样本熵的和,并将其均值MSampEn(C_3,C_4)作为输入元素构造脑电特征向量,利用支持向量机进行分类预测以识别左右手想象运动。实验结果表明,与经验模态分解以及总体经验模态分解方法相比,该特征提取方法具有更高的分类准确率。
[Abstract]:An improved method for feature extraction and classification of motion imaginary EEG signals is proposed. The local mean decomposition algorithm is used to decompose the original signal into a series of product function (PFV) components, and the pointless PF component is eliminated according to the range of 渭 rhythm and 尾 rhythm. According to the principle of feature time selection, the EEG signals of motion imagination of 4 sgs / 6 s are selected as classification data, and the sum of sample entropy of second order and third order PF components of CSP / C _ 4 leads are calculated respectively, and the mean value of M _ SampEnC _ (3) _ (C _ (3) C _ (4) is used as input element to construct the eigenvector of EEG. Support vector machine (SVM) is used to classify and predict the motion of the left and right hand. The experimental results show that the feature extraction method has a higher classification accuracy than the empirical mode decomposition and the total empirical mode decomposition.
【作者单位】: 太原理工大学计算机科学与技术学院;国网山西省电力公司太原供电公司;
【基金】:山西省青年基金“多模态视听觉脑电信号相关性研究”(2013021016-3)
【分类号】:R318;TN911.7
【相似文献】
相关期刊论文 前10条
1 ;脑电信号处理的研究取得阶段性成果[J];河北师范大学学报;1987年01期
2 李志瑞;张文杰;;通用脑电信号处理——微机系统初探[J];河北师范大学学报;1988年Z1期
3 孟欣,,欧阳楷;脑电信号的几个非线性动力学分析方法[J];北京生物医学工程;1997年03期
4 吴小培,冯焕清,周荷琴,王涛;独立分量分析及其在脑电信号预处理中的应用[J];北京生物医学工程;2001年01期
5 李英远,周卫东;径向基函数神经网络在脑电信号建模中的应用[J];山东生物医学工程;2002年02期
6 刘大路,江朝晖,冯焕清,王聪;基于脑电信号时空分布信息的思维特征研究[J];北京生物医学工程;2004年02期
7 许崇涛,沈民奋,李慧,朱国平;双谱分析方法在脑电信号分析中的应用[J];中国行为医学科学;2004年03期
8 汤晓军,宋卓,杨卓,张涛;双任务事件中脑电信号的熵计算(英文)[J];生物物理学报;2005年05期
9 蒋辰伟;章悦;曹洋;朱国行;顾凡及;王斌;;脑死亡与脑昏迷脑电信号的复杂度研究[J];生物物理学报;2008年02期
10 李谷;范影乐;庞全;;基于排列组合熵的脑电信号睡眠分期研究[J];生物医学工程学杂志;2009年04期
相关会议论文 前10条
1 薛蕴全;王秋英;王宏;;脑电信号的动态时空响应拓扑图[A];中国仪器仪表学会第三届青年学术会议论文集(上)[C];2001年
2 王裕清;粱平;郭付清;张登攀;;脑电信号诊断专家系统的研究[A];中国生理学会第21届全国代表大会暨学术会议论文摘要汇编[C];2002年
3 朱林剑;包海涛;孙守林;梁丰;;新型脑电信号采集方法与应用研究[A];大连理工大学生物医学工程学术论文集(第2卷)[C];2005年
4 许涛;朱林剑;包海涛;;基于思维脑电信号的假手的研究[A];提高全民科学素质、建设创新型国家——2006中国科协年会论文集(下册)[C];2006年
5 李爱新;孙铁;郭炎峰;;基于人工神经网络的脑电信号模式分类[A];自动化技术与冶金流程节能减排——全国冶金自动化信息网2008年会论文集[C];2008年
6 童珊;黄华;陈槐卿;;混沌理论在脑电信号分析中的应用[A];中国生物医学工程学会第六次会员代表大会暨学术会议论文摘要汇编[C];2004年
7 李凌;曾庆宁;尧德中;;利用两级抗交叉串扰自适应滤波器提取诱发脑电信号[A];中国生物医学工程学会第六次会员代表大会暨学术会议论文摘要汇编[C];2004年
8 葛家怡;周鹏;王明时;;睡眠脑电信号样本熵的研究[A];中国生物医学工程进展——2007中国生物医学工程联合学术年会论文集(下册)[C];2007年
9 李丽君;黄思娟;吴效明;熊冬生;;基于运动想象的脑电信号特征提取与分类[A];中国仪器仪表学会医疗仪器分会2010两岸四地生物医学工程学术年会论文集[C];2010年
10 葛家怡;周鹏;王明时;;睡眠脑电信号样本熵的研究[A];天津市生物医学工程学会2007年学术年会论文摘要集[C];2007年
相关重要报纸文章 前1条
1 张文清 记者 王春;意念控制车速及左右转弯前行[N];科技日报;2008年
相关博士学位论文 前10条
1 彭宏;普适化脑电信息感知关键问题的研究[D];兰州大学;2015年
2 吴玉鹏;AR谱在皮层痫样脑电信号分析应用[D];河北医科大学;2015年
3 吴畏;基于统计建模的多导联脑电信号时空建模方法研究[D];清华大学;2012年
4 孙宇舸;脑—机接口系统中脑电信号处理方法的研究[D];东北大学;2012年
5 周群;脑电信号同步:方法及应用研究[D];电子科技大学;2009年
6 赵丽;基于脑电信号的脑-机接口技术研究[D];天津大学;2004年
7 李春胜;脑电信号混沌特性的研究与应用[D];东北大学;2011年
8 欧阳高翔;癫痫脑电信号的非线性特征识别与分析[D];燕山大学;2010年
9 缪晓波;基于脑电信号的认知动力学系统研究——线性/非线性方法及动态时—频—空分析[D];重庆大学;2004年
10 张美云;阿尔茨海默病脑电信号多尺度时空定量特征研究[D];天津医科大学;2012年
相关硕士学位论文 前10条
1 于洪;基于脑电信号的警觉度估计[D];上海交通大学;2007年
2 蒋洁;基于高性能计算的脑电信号分析[D];燕山大学;2010年
3 张志琴;脑电信号的复杂性分析[D];中南大学;2009年
4 许凤娟;脑电信号采集与分析系统的设计[D];长春理工大学;2011年
5 曹铭;意识障碍患者脑电信号的非线性动力学评价分析[D];杭州电子科技大学;2012年
6 薛吉星;多通道脑电信号采集与处理系统研究[D];华南理工大学;2015年
7 刘静;基于加权排序熵的多通道脑电信号同步算法研究[D];燕山大学;2015年
8 陈泽涛;基于脑电信号分析的AD早期评估系统的设计与实现[D];燕山大学;2015年
9 王欢;基于非平稳时间序列分析方法的脑电信号模式识别[D];苏州大学;2015年
10 王琼颖;脑电信号的非线性动力学分析及其在睡眠分期中的应用[D];哈尔滨工业大学;2015年
本文编号:1926808
本文链接:https://www.wllwen.com/yixuelunwen/swyx/1926808.html