脉搏波实时分析技术的研究与脉搏辅诊系统设计
发布时间:2018-06-14 13:11
本文选题:脉图法 + 血流动力学 ; 参考:《杭州电子科技大学》2012年硕士论文
【摘要】:目前,高血压、心脏病等心血管循环系统疾病以其高发病率、低治愈率成为威胁人类生命健康的“头号杀手”,如若不能有效地予以防治,它将成为严重影响我国未来发展的严峻问题。随着科学技术的不断发展,研制的高新技术医疗仪器虽然给疾病患者带来了福音,但随之而来的高额医疗费用也给家庭及社会带来了沉重的压力。因此一种简单、准确、安全、低成本的分析技术的研究与实现就显得极为重要了。脉搏是人体生命存在的重要体征,是心脏、血管周期运动的外在表现,包含着极其丰富的心血管系统生理病理信息。其次,脉学悠久的历史为脉搏波分析技术的发展奠定了坚实的研究理论基础,再则脉搏波提取相对简单。综合考虑便可得出脉搏波分析技术便是适合心血管疾病防治的一种合适技术。 本文首先介绍了脉搏波的相关研究历史,继而介绍了脉搏波的形成机理、特点及现有的波形分析方法,同时简单阐述了心血管血流动力学理论及科研工作者们为计算各类血流动力学参数所搭建的数学模型。在此理论基础上,开展了脉搏波形分析及心血管血流动力学参数的研究。进行波形分析时,首先采用自适应算术平均滤波法和小波变换法实现波形预处理,以去除工频干扰、基线漂移的影响;其次运用时域、时频域等现代信号处理技术实现脉搏波特征信息提取,将前人优秀算法应用于脉搏信号分析,并对其进行了部分改进,包括N点差分阈值法、拐点法、小波模极大值对法等,其中改进的N点差分阈值法分别从时值、幅值等多方面对其检出结果进行限制,从而提高了特征信息检出的准确率。而在参数计算中,本文结合大量的参考文献并依据脉搏图像分析数学模型,整理并总结了如血压、泵血功能、微循环等八大类血流动力学参数计算公式,并对参数的生理意义进行了细致的介绍。 基于以上脉搏分析技术及血流动力学参数计算公式,本文研制了脉搏信号辅诊系统实验装置。该系统可实时读取由前端脉搏信号采集装置发送至数据库的脉搏波形数据,,继而完成波形的自动分析及血流动力学参数计算等功能,在一定程度上实现了心血管系统的远程在线监控。系统操作界面友好、使用方法简单,适合多种用户群体。为验证分析算法的有效性及系统的准确性,对其进行了性能测试及实验验证,测试结果表明该系统初步达到了设计目标。 最后,在对本文工作总结的同时提出了今后研究工作的展望,并对其中的疾病诊断及预测领域做了初步探索。
[Abstract]:At present, high blood pressure, heart disease and other cardiovascular and circulatory diseases have become the "number one killer" threatening human life and health because of their high incidence and low cure rate. If they cannot be effectively prevented and treated, It will become a serious problem that will seriously affect the future development of our country. With the continuous development of science and technology, the development of high-tech medical instruments has brought good news to patients with diseases, but the high medical costs have also brought heavy pressure to families and society. Therefore, the research and implementation of a simple, accurate, safe and low-cost analytical technology is extremely important. Pulse is an important sign of human life, it is the external manifestation of the cycle movement of heart and blood vessel, and it contains abundant physiological and pathological information of cardiovascular system. Secondly, the long history of pulse theory lays a solid theoretical foundation for the development of pulse wave analysis technology, and the extraction of pulse wave is relatively simple. It is concluded that pulse wave analysis is a suitable technique for cardiovascular disease prevention and treatment. This paper first introduces the research history of pulse wave, then introduces the formation mechanism, characteristics and existing waveform analysis methods of pulse wave. At the same time, the theory of cardiovascular hemodynamics and the mathematical models established by researchers to calculate various hemodynamic parameters are briefly described. On the basis of this theory, pulse waveform analysis and cardiovascular hemodynamic parameters were studied. In waveform analysis, the adaptive arithmetic average filtering method and wavelet transform method are used to pre-process the waveform to remove the influence of power frequency interference and baseline drift. Time and frequency domain and other modern signal processing techniques are used to extract the characteristic information of pulse wave. The former excellent algorithms are applied to pulse signal analysis, and some improvements are made, including N point difference threshold method, inflexion point method, wavelet modulus maximum pair method and so on. The improved N-point difference threshold method limits the detection results from time value and amplitude value respectively, thus improving the accuracy of feature information detection. In the calculation of parameters, this paper combines a large number of references and mathematical models of pulse image analysis, collates and summarizes the calculation formulas of eight kinds of hemodynamic parameters, such as blood pressure, blood pump function, microcirculation, etc. The physiological significance of the parameters is introduced in detail. Based on the above pulse analysis technique and the calculation formula of hemodynamic parameters, an experimental device of pulse signal auxiliary diagnosis system is developed in this paper. The system can read the pulse waveform data from the front end pulse signal acquisition device to the database in real time, and then complete the functions of automatic waveform analysis and hemodynamic parameter calculation. To a certain extent, the remote online monitoring of cardiovascular system is realized. The operation interface of the system is friendly, the method is simple and suitable for various user groups. In order to verify the validity of the analysis algorithm and the accuracy of the system, the performance test and experimental verification are carried out. The test results show that the system has reached the design goal. Finally, the future work of this paper is summarized, and the field of disease diagnosis and prediction is preliminarily explored.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R318.6
【参考文献】
相关期刊论文 前10条
1 罗志昌,张松,杨文鸣,杨子彬;脉搏波波形特征信息的研究[J];北京工业大学学报;1996年01期
2 杨琳;张松;杨益民;罗志昌;;基于重搏波谷点的脉搏波波形特征量分析[J];北京生物医学工程;2008年03期
3 陈婷;;王叔和《脉经》文献研究探析[J];北京中医药;2009年03期
4 毛建华,何怡刚,彭玉楼;基于算术傅里叶变换的小波变换快速算法[J];电路与系统学报;2004年01期
5 李墅娜;宋文爱;;高血压病脉象信号的时频分析[J];中北大学学报(自然科学版);2009年03期
6 白净,吴冬生,张菊鹏,周小强;脉搏波与生理病理变化关系的仿真研究[J];航天医学与医学工程;1996年01期
7 行鸿彦;许瑞庆;;基于经验模态分解的脉搏信号去噪[J];计算机应用与软件;2009年08期
8 唐铭一;李凯;马小铁;;脉搏波信号时域特征提取与算法的研究[J];计算机与现代化;2010年04期
9 杨舟;;心血管疾病危险因素的研究概况[J];内科;2008年02期
10 王俊杰;陈景武;;BP神经网络在疾病预测中的应用[J];数理医药学杂志;2008年03期
相关博士学位论文 前1条
1 张s
本文编号:2017495
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2017495.html