驱动—传感—结构一体的SMA人工骨骼肌生物灵感设计研究
本文选题:人工骨骼肌 + 生物灵感设计 ; 参考:《上海交通大学》2014年博士论文
【摘要】:骨骼肌是自然界最完美高效的生物驱动器。数百万年的生物进化使骨骼肌不仅具有柔性、大功率密度等特性,还具有集成驱动-传感-储能等多功能特性。骨骼肌作为自然界动物运动系统最重要的组成部分,让动物呈现出令人惊叹的运动特性。多年来,研究学者一致认为,如果人类可以实现生物骨骼肌仿生,就有可能实现复杂的生物多样性运动。因此骨骼肌仿生一直是国内外学者竞相研究的热点。然而骨骼肌仿生面临着仿生设计准则以及技术实现两大挑战。仿生设计旨在基于生物灵感解决工程问题。由于生物体大多具有独特且复杂的结构功能等特性,仿生设计并非是对生物体的盲目模拟,而是在工程问题分析、生物功能辨识以及技术实现等多方面的优化权衡。 本学位论文以实现具有柔性、大功率密度、以及集成驱动-传感功能的人工骨骼肌为目标。由于生物骨骼肌的复杂多变性,实现骨骼肌仿生首先需要解决仿生设计准则问题,即如何指导仿生设计;其次是仿生材料的选择及处理,即如何实现仿生设计。本文系统地提出了生物灵感设计体系架构,指导人工骨骼肌的仿生设计,进一步以形状记忆合金(SMA)为主要驱动元素,实现了满足骨骼肌生物力学特性仿生的SMA人工骨骼肌设计。此外,通过深入研究SMA自传感特性及非线性迟滞特性等关键技术问题,实现了驱动-传感-结构集成设计以及消除SMA迟滞对SMA-AM驱动精度的影响,最后将SMA-AM初步应用于踝足康复系统。本文的主要研究工作及成果归纳如下: 一、人工骨骼肌生物灵感设计体系架构。系统地建立了生物灵感设计体系架构及设计准则,指出仿生设计主要包含生物系统辨识和工程系统实现两部分,并共同影响仿生设计程度。此外,依据设计体系架构,对骨骼肌系统进行了详细的分析和辨识,简化了骨骼肌结构和功能特性,并建立了骨骼肌生物力学模型,作为骨骼肌仿生设计的指导准则,为下一步人工骨骼肌的研制奠定了理论基础。 二、驱动-传感-结构集成的新型SMA人工骨骼肌的研制。基于上一步建立的设计体系架构以及骨骼肌生物力学模型,利用回转并联式SMA丝实现对骨骼肌力-速度、主动力-长度的力学特性模拟,利用由PET网并联硅橡胶管组成的CMPC实现对骨骼肌被动力-长度特性的模拟。类骨骼肌实验表明,SMA-AM初步实现了对骨骼肌生物力学特性、驱动功能及储能功能的模拟。为进一步实现SMA-AM驱动-传感-结构集成设计,在深入分析了SMA电阻率变化特性的基础上,,推导建立了关于SMA的自传感模型。精确的跟踪控制证明了SMA的自传感功能,从而为后续实现基于SMA-AM集成驱动与传感的主动式踝足康复系统的研制奠定了理论基础。 三、SMA人工骨骼肌迟滞建模及补偿控制。SMA固有的非线性饱和迟滞特性严重影响了SMA-AM的驱动控制速度和精度,甚至会造成控制的不稳定性。为消除SMA迟滞影响,首先对SMA在不同负载以及驱动频率下的迟滞变化特性做了深入分析,并依此建立了基于Sigmoid函数的迟滞(SBH)模型。实验结果表明SBH模型可以有效地描述SMA迟滞曲线。进一步在此基础上,建立了基于逆SBH模型的前馈控制系统,实验结果进一步表明,利用SBH模型可以有效地补偿SMA迟滞曲线,从而为下一步SMA-AM的精确快速跟踪控制应用奠定了基础。 四、SMA人工骨骼肌在踝足康复系统中的应用探索。为验证SMA-AM的驱动与自传感特性,设计了基于SMA-AM驱动的主动式踝足康复系统,该系统具有结构简单紧凑,大功率密度,大输出力等特性,有效地实现了人体踝关节的背屈/趾屈。为深入分析该系统的动力学特性,从SMA热驱动特性入手,结合SMA电路特性、传热特性、迟滞特性、自传感特性以及机械振动特性,建立了完整反映SMA-AM驱动系统在多场耦合特性下的综合动力学模型,进一步基于上述综合建模设计了滑模控制器,并利用Lyapunov函数证明了SMA闭环控制系统的稳定性;最后通过实验证明了综合动力学模型的正确性以及所设计的控制器的有效性。实现了踝足外骨骼自传感条件下角度的精确和快速跟踪,响应频率达到1Hz,RMS减小了82%,初步满足了踝足康复应用要求。
[Abstract]:Skeletal muscle is the most perfect and efficient biological drive in nature. Millions of years of biological evolution make skeletal muscles not only flexible, high-power density, but also the multi-functional characteristics of integrated drive sensing and energy storage. The skeletal muscle is the most important component of the natural animal motion system, making the animals present an amazing movement. Characteristics. Over the years, researchers have agreed that if human skeletal muscle bionics can be realized, it is possible to realize complex biological diversity movement. Therefore, skeletal muscle bionics has always been a hot spot for scholars at home and abroad. However, skeletal muscle bionics is faced with two major challenges of biomimetic design criteria and technology implementation. The bionic design is not a blind simulation of the organism because of the unique and complex structural functions of the organism. It is a trade-off between the engineering problem analysis, the biological function identification and the technical implementation.
This thesis aims to realize the artificial skeletal muscles with flexible, high power density and integrated drive sensing function. Because of the complex and multi degeneration of the skeletal muscle, the bionic design criteria need to be solved first, that is, how to guide the bionic design; secondly, the selection and treatment of biomimetic materials, that is, how to implement the biomimetic material In this paper, a bionic design system is put forward in this paper to guide the bionic design of artificial skeletal muscle, and to further use shape memory alloy (SMA) as the main driving element to realize the SMA artificial skeletal muscle design satisfying the biomechanical properties of skeletal muscles. In addition, through the in-depth study of the SMA autobiography characteristics and the nonlinear delay. The key technical problems, such as hysteresis, have realized the drive sensing structure integration design and the elimination of the effect of SMA hysteresis on the precision of SMA-AM drive. Finally, SMA-AM is applied to the ankle foot rehabilitation system. The main research work and results of this paper are summarized as follows:
First, the architecture of artificial skeletal muscle biologic Inspiration Design. The architecture and design criteria of biological inspiration design are established systematically. It is pointed out that bionic design mainly includes two parts of biological system identification and engineering system implementation, and it affects the degree of bionic design together. In addition, the skeletal muscle system is detailedly divided according to the design system architecture. The structural and functional characteristics of skeletal muscle were simplified and the biomechanical model of skeletal muscle was established. It was the guiding principle for the bionic design of skeletal muscle and laid a theoretical foundation for the development of the next artificial skeletal muscle.
Two, the development of a new type of SMA artificial skeletal muscle, driven by sensing structure integration. Based on the design architecture and skeletal muscle biomechanical model established in the last step, the mechanical characteristics of skeletal muscle force velocity, active force length are simulated with the parallel SMA wire, and the skeleton of the PET network parallel silicon rubber tube is used to realize the skeleton. The simulation of muscle strength and length characteristics. The skeletal muscle experiments show that SMA-AM has preliminarily realized the simulation of biomechanical properties, driving function and energy storage function of skeletal muscle. In order to further realize the SMA-AM drive sensing structure integration design, the Autobiography of the SMA is derived on the basis of the in-depth analysis of the characteristics of the SMA resistivity change. The model. Accurate tracking and control proved the autobiography function of SMA, thus laying a theoretical foundation for the subsequent implementation of the active ankle foot rehabilitation system based on SMA-AM integrated drive and sensing.
Three, SMA artificial skeletal muscle Hysteresis Modeling and compensation control.SMA inherent nonlinear saturation hysteresis seriously affects the driving control speed and precision of SMA-AM, and even results in the instability of control. In order to eliminate the effect of SMA hysteresis, the hysteresis characteristics of SMA under different loads and driving frequencies are analyzed. The Sigmoid function based hysteresis (SBH) model is established. The experimental results show that the SBH model can effectively describe the SMA hysteresis curve. On this basis, the feedforward control system based on the inverse SBH model is established. The experimental results show that the SBH model can effectively compensate the SMA hysteresis curve and thus be the next SMA-AM. It lays the foundation for the application of accurate and fast tracking control.
Four, the application of SMA artificial skeletal muscle in ankle foot rehabilitation system. In order to verify the driving and autobiography characteristics of SMA-AM, an active ankle foot rehabilitation system based on SMA-AM driven is designed. The system has the characteristics of simple and compact structure, high power density, large output force and so on. It effectively realizes the back flexion / toe flexion of the human ankle. The dynamic characteristics of the system are analyzed, starting with the SMA thermal driving characteristics, combining with the characteristics of SMA circuit, heat transfer, hysteresis, autobiography and mechanical vibration, a comprehensive dynamic model is established to fully reflect the multi field coupling characteristics of the SMA-AM drive system, and a sliding mode controller is designed and designed on the basis of the above comprehensive modeling. The stability of the SMA closed loop control system is proved by the Lyapunov function. Finally, the correctness of the integrated dynamic model and the effectiveness of the designed controller are proved by the experiment. The accuracy and fast tracking of the angle of the ankle foot autobiography is realized, the response frequency is 1Hz, the RMS is reduced by 82%, and the ankle foot Kang is preliminarily satisfied. Re application requirements.
【学位授予单位】:上海交通大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:R318.17
【参考文献】
相关期刊论文 前10条
1 Ballel.Z.Moayad;;Effects of Biomimetic Surface Designs on Furrow Opener Performance[J];Journal of Bionic Engineering;2009年03期
2 ;Collective mechanism of molecular motors and a dynamic mechanical model for sarcomere[J];Science China(Technological Sciences);2011年08期
3 ;A dynamic model of skeletal muscle based on collective behavior of myosin motors-Biomechanics of skeletal muscle based on working mechanism of myosin motors(I)[J];Science China(Technological Sciences);2012年06期
4 殷跃红;郭朝;;分子马达集体运行机制及肌小节动态力学模型[J];中国科学:技术科学;2011年11期
5 郭朝;殷跃红;;基于分子马达集体运行机制的骨骼肌收缩动态力学模型——基于分子马达运行机制的骨骼肌生物力学原理(Ⅰ)[J];中国科学:技术科学;2012年06期
6 殷跃红;陈幸;;骨骼肌收缩的生物电化学变频调控原理——基于分子马达运行机制的骨骼肌生物力学原理(Ⅱ)[J];中国科学:技术科学;2012年08期
7 刘旺中;陈照波;黄山云;焦映厚;;形状记忆合金迟滞模型[J];吉林大学学报(工学版);2012年03期
8 岑海堂;陈五一;;仿生学概念及其演变[J];机械设计;2007年07期
9 ;Coupling mechanism of multi-force interactions in the myosin molecular motor[J];Chinese Science Bulletin;2010年31期
10 冯颖;胡跃明;苏春翌;;基于Prandtl-Ishlinskii模型的一类回滞非线性系统自适应控制[J];自动化学报;2006年03期
相关博士学位论文 前2条
1 郭朝;基于分子马达的骨骼肌生物力学原理及其在外骨骼机器人人机力交互中应用[D];上海交通大学;2012年
2 谷国迎;压电陶瓷驱动微位移平台的磁滞补偿控制理论和方法研究[D];上海交通大学;2012年
本文编号:2057365
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2057365.html