当前位置:主页 > 医学论文 > 生物医学论文 >

基于表面肌电非负矩阵分解与一致性的肌间协同-耦合关系研究

发布时间:2018-08-08 18:08
【摘要】:肌肉协同模型是神经产生并控制运动的低维度结构,探讨不同动作任务下的表面肌电信号(s EMG)间的相干性分析,可以体现相应肌群的协同耦合关系,进而能从神经控制运动与肌肉相互配合协调的角度揭示运动产生与执行规律。组织8名年轻健康受试者(男女均半、20~24岁)进行上肢腕部屈、伸实验,采集动作时相应肌群的s EMG数据,引入非负矩阵分解(NMF)方法分析肌间协同性,并进一步对协同性较高的肌群采用一致性分析方法,研究信号beta(15~35 Hz)和gamma(35~60 Hz)频段的耦合强度关系,探讨腕部伸屈动作下不同受试者之间的协同-耦合性差异。结果表明:腕伸动作下,主动肌桡侧腕短伸肌(ECR)、指伸肌(ED)、尺侧腕伸肌(ECU)、肱桡肌(B)在协同模块W5中具有协同关系,且肌间耦合强度显著(P0.05),beta频段与gamma频段一致性显著面积相差较大(1.261±0.966);腕屈动作下,分别在协同模块W_1W_4W_5中存在具有协同关系的肌肉对,且肌肉间耦合强度显著(P0.001),在beta和gamma频段一致性显著面积相差较小(0.412±0.163),但主动肌桡侧腕屈肌、指浅屈肌间不具有协同性,耦合关系较弱。以上说明:神经控制运动的方式不同,体现为肌肉协同-耦合关系有所差异;在同一协同模块中,协同性较高的肌肉间耦合关系较强,揭示神经控制运动规律与肌肉相互配合方式;运用此方法进行肌间协同-耦合联合分析,可望深入揭示中枢神经模块化协同控制运动机制,进一步为运动障碍患者功能分析和评价提供科学依据。
[Abstract]:Muscle coordination model is a low-dimensional structure of nerve generation and control movement. The coherence analysis of surface electromyography (s EMG) signals under different action tasks can reflect the cooperative coupling relationship of the corresponding muscle groups. Furthermore, it can reveal the law of motion generation and execution from the angle of coordination between nerve control movement and muscle. Eight young healthy subjects (male and female, aged 20 to 24) were studied for wrist flexion and extention of upper limbs. S EMG data of the corresponding muscle groups were collected, and non-negative matrix factorization (NMF) was introduced to analyze the intermuscular synergy. Furthermore, the consistency analysis method was used to study the coupling strength relationship between beta (155Hz) and gamma (356Hz), and to explore the differences of synergetic coupling between different subjects under wrist flexion and extension. The results showed that the (ECU), brachioradialis muscle (B) of extensor carpal short muscle (ECR), extensor digitorum muscle (ED), ulnar extensor carpal muscle (ECU), radial muscle had a synergistic relationship in W5 under carpal extension. There was significant difference in the area of the consistency between the beta band and the gamma band (1.261 卤0.966). Under wrist flexion, there were synergistic muscle pairs in the synergetic module W_1W_4W_5, respectively. The strength of intermuscular coupling was significant (P0. 001), and the difference of the consistent area between beta and gamma was small (0.412 卤0.163), but there was no synergy between flexor carpi radialis and flexor digitorum superficial flexor, but the coupling relationship was weak. The results show that the way of neural control is different, which is reflected by the difference of muscle synergy and coupling; in the same cooperative module, there is a strong synergy between muscles. It is expected to reveal the mechanism of modular cooperative control of central nervous system by using this method to analyze the intermuscular synergetic and coupling joint analysis. To provide scientific basis for functional analysis and evaluation of patients with dyskinesia.
【作者单位】: 燕山大学电气工程学院河北省测试计量技术及仪器重点实验室;
【基金】:国家自然科学基金(61271142,61503325) 河北省自然科学基金(F2015203372)
【分类号】:R318;TN911.6

【相似文献】

相关期刊论文 前10条

1 宋金歌;杨景;陈平;佘玉梅;;一种非负矩阵分解的快速稀疏算法[J];云南民族大学学报(自然科学版);2011年04期

2 尹星云;;非负矩阵分解的基本原理和研究现状分析[J];科技资讯;2011年35期

3 程明松;刘勺连;;一种实用快速非负矩阵分解算法[J];大连理工大学学报;2013年01期

4 唐晓芬;陈莉;;最大相关熵非负矩阵分解在基因表达数据聚类中的应用[J];计算机与应用化学;2013年11期

5 曾文梅;;基于半监督非负矩阵分解的人流量分析[J];哈尔滨师范大学自然科学学报;2011年02期

6 孟佳音;刘丁酉;;基于分布估计算法的非负矩阵分解[J];湖北民族学院学报(自然科学版);2012年03期

7 王雪明;王套;;非负矩阵分解的相关讨论[J];湖南农机;2013年09期

8 曹胜玉;刘来福;;非负矩阵分解及其在基因表达数据分析中的应用[J];北京师范大学学报(自然科学版);2007年01期

9 李巧;孔薇;;改进的非负矩阵分解在基因表达数据中的应用[J];信息技术;2010年12期

10 陈清华;陈六君;郭金忠;;二进制约束下的NMF方法及其应用[J];北京师范大学学报(自然科学版);2009年01期

相关会议论文 前10条

1 孙江明;李通化;;非平滑三维非负矩阵分解[A];第九届全国计算(机)化学学术会议论文摘要集[C];2007年

2 蒋永锴;叶东毅;;基于稀疏非负矩阵分解的自动多文摘方法[A];中国计算机语言学研究前沿进展(2007-2009)[C];2009年

3 马帅;吴飞;杨易;邵健;;基于稀疏非负矩阵分解的图像检索[A];第七届和谐人机环境联合学术会议(HHME2011)论文集【oral】[C];2011年

4 徐利民;龚珊;余再军;;奇异值分解与非负矩阵分解色在数据降维方面的特性分析[A];2010年通信理论与信号处理学术年会论文集[C];2010年

5 蔡蕾;朱永生;;基于稀疏性非负矩阵分解和支持向量机的轴心轨迹图识别[A];2008年全国振动工程及应用学术会议暨第十一届全国设备故障诊断学术会议论文集[C];2008年

6 蒋霈霖;;KL散度下的非负矩阵分解[A];中国自动化学会中南六省(区)2010年第28届年会·论文集[C];2010年

7 杨宝;朱启兵;黄敏;;基于非负矩阵分解一稀疏表示分类的玻璃缺陷图像识别[A];第24届中国控制与决策会议论文集[C];2012年

8 钱乐乐;高隽;徐小红;;非负性约束的图像稀疏编码[A];第七届全国信息获取与处理学术会议论文集[C];2009年

9 朱昊;黄源水;付梦印;;基于NMF的道路识别算法在野外环境感知中的应用[A];第九届全国光电技术学术交流会论文集(下册)[C];2010年

10 郑能恒;蔡毅;李霞;Tan Lee;;基于非负矩阵分解和向量相似测度的语音与音乐分离算法[A];第十一届全国人机语音通讯学术会议论文集(一)[C];2011年

相关博士学位论文 前10条

1 杨士准;基于样本和特征的迁移学习方法及应用[D];国防科学技术大学;2013年

2 叶军;基于正则化方法的非负矩阵分解算法及其应用研究[D];南京理工大学;2014年

3 陆玉武;图像分类中流形回归与非负矩阵分解研究[D];哈尔滨工业大学;2015年

4 张恩德;在线社会网络分析与挖掘若干关键问题研究[D];东北大学;2014年

5 胡俐蕊;非负矩阵分解方法及其在选票图像识别中的应用[D];安徽大学;2013年

6 殷海青;图像分析中的非负矩阵分解理论及其最优化和正则化方法研究[D];西安电子科技大学;2011年

7 杨洪礼;非负矩阵与张量分解及其应用[D];山东科技大学;2011年

8 史加荣;多尺度张量逼近及应用[D];西安电子科技大学;2012年

9 方蔚涛;人脸识别特征抽取算法的研究[D];重庆大学;2012年

10 刘昱昊;基于非负矩阵分解算法的人脸识别技术的研究[D];吉林大学;2014年

相关硕士学位论文 前10条

1 谢昊;非负矩阵分解初始化及其应用[D];暨南大学;2015年

2 王一;凸与半非负矩阵分解的近点梯度方法研究[D];东北师范大学;2015年

3 项磊;基于乳腺癌计算机辅助诊断的病理图像分析[D];南京信息工程大学;2015年

4 王丹;基于非负矩阵分解的脑电信号特征提取算法研究[D];燕山大学;2015年

5 马春霞;非负矩阵分解及在基因表达数据分析中的应用研究[D];曲阜师范大学;2015年

6 崔艳荣;基于非负矩阵分解的高光谱遥感数据融合方法分析及应用[D];电子科技大学;2014年

7 赖淑珍;非负矩阵分解若干算法研究与应用[D];电子科技大学;2014年

8 赵龙;基于多流形正则化非负矩阵分解的多视图聚类[D];大连理工大学;2015年

9 黄震;基于多视角非负矩阵分解的同名区分算法研究[D];大连理工大学;2015年

10 邵强;改进的非负矩阵分解算法及其在人脸识别中的应用[D];河北工业大学;2015年



本文编号:2172600

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/swyx/2172600.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2da69***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com