AQP7在卵母细胞冷冻保存与成熟中的功能及其机制研究
[Abstract]:1 cryoprotectant regulates AQP7 expression in oocytes and promotes water transport during cryopreservation.
Objective: to detect the role of AQP7 in oocyte cryopreservation.
Materials and methods:
1. The expression of aquaporin AQP3,7,9 mRNA and protein in MII oocytes and MII oocytes of C57BL/6J mice were detected.
2. Comparing the expansion ability of oocytes to hypotonic solution and water transport rate under mercury ion treatment and non-treatment.
3. The oocytes were treated with 8% ethylene glycol (EG), 9.5% DMSO and 0.5M sucrose respectively. The expression of AQP3,7,9 protein was detected.
4. GFP-hAQP7 fusion protein vector was transfected into 293T cells and treated with EG, DMSO and sucrose DMEM respectively. The expression of GFP-hAQP7 protein in 293T cells was monitored in real time.
5. Fixed oocytes with a micromanipulator, the volume of oocytes in EG and DMSO solution was monitored in real time.
6. compare EG and DMSO as cryoprotectant and oocyte survival rate.
Result:
1. AQP3,7,9 mRNA and protein levels were detected in both human and mouse M2 oocytes.
2. after the treatment of Hg ion, the oocytes of the oocytes decreased and the transport rate of the water decreased.
3. Ethylene glycol (EG), DMSO and sucrose could up-regulate the expression of AQP7 protein in oocytes, and the up-regulation effect was the strongest after DMSO treatment.
4. EG, DMSO and sucrose can up-regulate the expression of GFP-hAQP7 protein in 293T cells, and the up-regulation effect of GFP-hAQP7 protein in DMSO treatment group is the most obvious.
5. compared to EG, the volume of oocytes in DMSO solution changed faster.
6. compared to EG, DMSO was used as cryoprotectant, and the survival rate of oocytes cryopreservation was low.
CONCLUSION: DMSO can stimulate the up-regulation of AQP7 expression in oocytes more than EG. This up-regulation can promote the water permeation of oocytes during cryopreservation and reduce the time for oocytes to reach osmotic equilibrium.
The function of 2AQP7 in oocyte maturation and cryopreservation
Objective: to elucidate the function of AQP7 in oocyte maturation and cryopreservation.
Materials and methods:
1. The natural cycle and controlled superovulation (COH) mouse oocytes were collected and fertilized in vitro. The fertilization rates of the two groups were compared. The expression of AQP7 mRNA was detected by Real-time PCR.
2. The expression of AQP7 mRNA in GV and MII oocytes was compared by Real-time PCR, and the distribution of AQP7 protein was detected by immunofluorescence.
3. AQP7 siRNA was injected into GV oocytes by microinjection and the expression of AQP7 was knocked down.
4. The MII oocytes of natural cycle were collected and cultured in HTF containing insulin, LH and FSH for 1 hour. The distribution of AQP7 in the cells was detected by immunofluorescence assay.
5. The co-localization of AQP7 and F-actin in GV, MI and MII oocytes was detected by immunofluorescence.
6. EG and DMSO were used to vitrify and freeze the oocytes respectively. After thawing and fresh oocytes were fertilized simultaneously in vitro to calculate the fertilization rate.
7. Fresh unfrozen oocytes were used as control group. The expression of AQP 7 was detected by immunofluorescence 2 hours after vitrification.
8. GV oocytes were injected with Sramble RNA and AQP7 siRNA respectively, and cultured in vitro for 16-18 hours, then vitrified with EG. The survival rate was calculated by thawing.
Result:
1. The in vitro fertilization rate of oocytes in COH group was significantly lower than that in natural cycle group, and the expression level of AQP7 mRNA in MII oocytes in COH group was significantly lower than that in natural cycle group.
2. The expression level of AQP7 mRNA in MII oocytes was significantly lower than that in GV oocytes. Compared with GV oocytes, AQP7 was more distributed on the cell membrane and cytoplasmic redistribution was significantly reduced.
3. After injecting siRNA targeting AQP7 into GV oocytes and knocking down AQP7 expression, the maturation rate of oocytes decreased significantly.
4. After treatment with Insulin and LH, the distribution of AQP7 increased on the oocyte membrane and decreased in the cytoplasm.
5. Co-localization of AQP7 and F-actin was detected in GV, M I and M I I oocytes. With the development of oocytes, the distribution of AQP7 decreased in cytoplasm and increased in cell membrane.
6. There was no significant difference in fertilization ability of cryopreserved oocytes thawed with DMSO or EG as cryoprotectants, which was lower than that of fresh control group. The expression of AQP7 was not significantly different between DMSO and EG groups, but higher than that of unfrozen control group.
After knockdown of 7.AQP7 expression, the survival rate of oocytes cryopreservation was significantly reduced.
CONCLUSION: AQP7 is involved in oocyte maturation through co-localization with F-actin and F-actin transport from cytoplasm to membrane during oocyte development from GV stage to MII stage.
3 Cryoprotectant and hyperosmotic pressure stimulate the expression and localization of AQP7 in oocytes through the PI3K/PKC pathway
Objective: To clarify the molecular mechanism of AQP7 expression and localization in oocytes stimulated by cryoprotectants and hyperosmotic pressure.
Materials and methods:
1. The expression levels of CPEB and Aurora A phosphorylation and total protein in oocytes treated with cryoprotectant EQDMSO and sucrose solution were detected by immunofluorescence and Western blotting.
2. Staurosporine/HTF, LY294002/HTF, U0126/HTF, SP600125/HTF pretreated MII oocytes and control group 5 oocytes were treated with 8% EG/HTF solution for 20 minutes. The expression of AQP7, CPEB, phosphorylated CPEB, Aurora A and phosphorylated Aurora A protein was detected by immunofluorescence assay.
GFP-hAQP7 was expressed in 3.293FT cells. The expression of GFP-hAQP7 was detected by confocal laser microscopy and the level of GFP-hAQP7 protein was detected by Western blotting.
4. Oocytes were treated with 0.25M, 0.5M, 0.7M and 1M sucrose solution for 20 minutes respectively. HTF was used as control group. The expression of AQP7 was detected by immunofluorescence.
5.293 FT cells were transfected with GFP-hAQP7 vector and treated with DMSO, EG and sucrose solution for 20 min respectively. The expression of GFP-hAQP7 in each group was detected by confocal laser microscopy. The expression of GFP-hAQP7 in each group was transfected into pEGFP-Cl vector as control.
6. Immunocoprecipitation was used to detect the binding of AQP7 and F-ACTIN in 293FT cells expressing GFP-hAQP7.
Result:
1. EG, DMSO and sucrose can up-regulate the expression of phosphorylated CPEB protein in oocytes. Compared with EG group, DMSO group has more up-regulated expression of phosphorylated CPEB protein. The up-regulated level of phosphorylated CPEB kinase Aurora A is also up-regulated, and the up-regulated effect of DMSO is most obvious.
2. PKC pathway inhibitor Staurosporine and PI3K pathway inhibitor LY294002 significantly inhibited the up-regulation effect of cryoprotectant EG on AQP7 expression, while Erkl/2 pathway and JNK pathway inhibitor did not inhibit the up-regulation effect. The same result was found in 293FT cells expressing GFP-hAQP7.
3. PKC and P13K pathway inhibitors inhibited the increased expression of CPEB and Aurora A at oocyte level.
4. The expression level of AQP7 increased with the increase of osmotic pressure, and the distribution of AQP7 increased with the increase of osmotic pressure.
5. co immunoprecipitation assay showed that AQP7 and F-ACTIN were bound together.
CONCLUSION: Cryoprotectants up-regulate the expression of AQP7 by activating the protein CPEB and Aurora phosphorylation of mRNA translation in oocytes via PI3K/PKC pathway. High osmotic pressure stimulates the increased distribution of AQP7 on the cell membrane. In cells, AQP7 is bound to F-ACTIN. It is possible that AQP7 is bound to the cytoplasm by F-ACTIN motility. Transport to the cell membrane.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:R318.52
【相似文献】
相关期刊论文 前10条
1 陈桂兰,黄天华,谢庆东,王晓梅,熊小芳;卵母细胞携带的HBV DNA在小鼠早期胚胎中的复制与表达[J];癌变.畸变.突变;2005年03期
2 刘晓妍;郝翠芳;张守信;沈肖方;单英华;;对体外授精8 h后未受精卵母细胞行挽救性卵细胞质内单精子注射并妊娠1例[J];中华妇幼临床医学杂志;2008年04期
3 袁其晓;;从人排卵前卵泡分离得的卵丘细胞能分泌甾体激素[J];国外医学.妇产科学分册;1986年02期
4 朱敬璋,陈涤瑕,张志华,刘年彬,张怡,卢光t,范立青,黄善保,卢惠霖;人类体外受精和胚胎移植中促排卵药物临床应用的初步观察[J];中南大学学报(医学版);1988年01期
5 吴际,张丽珠,刘平;人窦前卵泡的体外发育及其卵母细胞成熟过程的观察[J];中华妇产科杂志;1998年09期
6 沈维干,陈彦,李朝军,毕春明,张锡然,贡昌春;香烟烟雾水溶物对小鼠卵母细胞成熟和IVF的影响[J];中国公共卫生;2000年05期
7 蒋学俊pennStateCollegeofMedicine,DepartmentofCellularandMolecularPhysiology!湖北武汉430060,李晓艳,RandallL.Rasmusson;离子通道在卵母细胞中的表达及电生理学实验方法[J];中国心脏起搏与心电生理杂志;2000年02期
8 田辉凯,李学军;爪蟾卵母细胞表达体系在功能基因组学研究中的应用[J];国外医学.分子生物学分册;2002年04期
9 蔡学泳,陈贵安,廉颖,郑晓英,彭红梅;玻璃化冷冻方法中冷冻保护剂及制冷速度对家兔卵母细胞纺锤体的影响[J];北京大学学报(医学版);2004年06期
10 章志国,魏兆莲,曹云霞,丛林,周平,赵济华,王艳玲,李芬;人成熟卵泡液在人未成熟卵母细胞体外培养中的应用[J];生殖医学杂志;2005年01期
相关会议论文 前10条
1 杨小淦;刘红波;卢晟盛;陆阳清;卢克焕;;利用单胚胎抑制消减杂交技术筛选猪MⅡ期卵母细胞转录本的研究[A];中国畜牧兽医学会动物繁殖学分会第十五届学术研讨会论文集(上册)[C];2010年
2 陈秀芬;夏国良;谢辉蓉;陶勇;雷蕾;;促性腺激素诱导大、小鼠卵母细胞体外成熟的差异[A];动物生理生化学分会第八次学术会议暨全国反刍动物营养生理生化第三次学术研讨会论文摘要汇编[C];2004年
3 豆兴堂;;羊JIVET技术研究进展[A];《2011中国羊业进展》论文集[C];2011年
4 王超;夏国良;金世英;王凤超;雷蕾;;促减数分裂甾醇参与FSH诱导的小鼠卵母细胞的成熟[A];动物生理生化学分会第八次学术会议暨全国反刍动物营养生理生化第三次学术研讨会论文摘要汇编[C];2004年
5 章保平;易建明;高国龙;;牛卵巢黄体类型对卵母细胞采集及体外成熟率的影响[A];全国首届动物生物技术学术研讨会论文集[C];2004年
6 闫真;马玉珍;刘东军;周平;旭日干;;间隙连接蛋白45基因的克隆及在绵羊卵母细胞COCs中的表达[A];第一届中华医学会生殖医学分会、中国动物学会生殖生物学分会联合年会论文汇编[C];2007年
7 关雪辰;刁丽霞;唐爽;欧阳迎春;;粘虫脑和肠肽对德国小蠊卵母细胞生长发育的影响[A];昆虫与环境——中国昆虫学会2001年学术年会论文集[C];2001年
8 岳利民;;生殖生理学发展研究[A];2010-2011生理学学科发展报告[C];2011年
9 梁成光;霍立军;钟志胜;陈大元;孙青原;;卵丘细胞cAMP-MAPK信号通路对猪卵丘-卵母细胞复合体减数分裂恢复的作用[A];第十届全国生殖生物学学术研讨会论文摘要集[C];2005年
10 吴琰婷;陆秀娥;徐键;黄荷凤;;卵泡液骨形成蛋白-15水平与卵母细胞及胚胎质量[A];第一届中华医学会生殖医学分会、中国动物学会生殖生物学分会联合年会论文汇编[C];2007年
相关重要报纸文章 前10条
1 记者 刘霞;雌性老鼠出生后仍产卵母细胞[N];科技日报;2009年
2 记者 许琦敏;出生后卵母细胞还能不断产生[N];文汇报;2009年
3 杨淑娟;美发现近期骨髓细胞不能形成卵母细胞[N];中国医药报;2006年
4 付东红 马凤琴;我国第一个“三冻”男婴诞生[N];健康报;2006年
5 张建松 杨金志;挑战80多年生殖“常识”[N];大众科技报;2009年
6 记者 何德功;日本用卵母细胞成功培育出幼鼠[N];新华每日电讯;2004年
7 美讯;使用冷冻卵母细胞可能降低体外受精成功率[N];医药经济报;2006年
8 孙玉良 姚永玲;国内首例“三冻”试管婴儿在北医三院诞生[N];光明日报;2006年
9 本报记者 吴m#麓;吴际:发现卵子再生秘密[N];北京科技报;2009年
10 记者 刘欢 通讯员 孙玉良 姚永玲;国内首例“三冻”试管婴儿诞生[N];北京日报;2006年
相关博士学位论文 前10条
1 鹿群;卵母细胞激活技术与胚胎干细胞分离、培养[D];山东大学;2005年
2 谢辉蓉;促减数分裂甾醇对小鼠卵母细胞减数分裂的作用研究[D];中国农业大学;2004年
3 禹学礼;牛IVF胚胎培养与冷冻方法优化[D];西北农林科技大学;2010年
4 王慧利;小鼠卵母细胞染色质凝集的调控及咖啡因在山羊体细胞克隆中的应用[D];山东农业大学;2010年
5 崔龙波;不同年龄小鼠生发泡互换及改变核质比对卵成熟和发育的影响[D];东北农业大学;2003年
6 聂睿;HBV在辅助生育技术中的传播风险[D];华中科技大学;2011年
7 白晓红;卵母细胞体外成熟培养的研究[D];天津医科大学;2002年
8 颜山;卵母细胞成熟潜能获得的温度依赖性分子机制的初步研究[D];复旦大学;2004年
9 武浩;小鼠-山羊交互异种核移植研究[D];西北农林科技大学;2004年
10 钱云;卵母细胞的体外成熟及其分子生物学机制的初步研究[D];南京医科大学;2005年
相关硕士学位论文 前10条
1 邢琼;雌性配子与人类三原核囊胚的玻璃化冷冻研究[D];安徽医科大学;2007年
2 潘登科;山头体细胞核移植(克隆)及胚胎移植的研究[D];甘肃农业大学;2002年
3 张艳玲;水牛精子胞质内显微受精的初步研究[D];广西大学;2002年
4 朱广香;屠宰山羊卵巢有腔卵母细胞体外培养成熟的研究[D];四川农业大学;2003年
5 路国正;波尔山羊耳成纤维细胞核移植的研究[D];山东师范大学;2003年
6 石少权;小鼠卵母细胞体外成熟培养及体外受精研究[D];重庆医科大学;2004年
7 金海霞;不同培养介质及冷冻方法对小鼠卵母细胞体外成熟及胚胎发育的影响[D];郑州大学;2004年
8 张清健;乙肝病毒DNA在人淋巴细胞、精子与小鼠卵母细胞中的存在与整合[D];汕头大学;2003年
9 王艾平;山羊卵母细胞冷冻保存及其效果的研究[D];第三军医大学;2005年
10 王炼炼;表皮生长因子EGF与未成熟卵母细胞体外成熟的相关研究[D];重庆医科大学;2005年
,本文编号:2207701
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2207701.html