言语诱发反应中频率跟随反应部分的瞬时能量谱分析
[Abstract]:Auditory Evoked Potentials (AEP) are the bioelectrical changes in the central nervous system associated with external stimuli produced by specific sound stimulation of the auditory system. At present, the most well-known is Auditory Brainstem Response (ABR), the most common of which is the click-induced ABR (ABR). Click Evoked Brainstem Response (click-ABR), click-ABR in healthy people generally contains seven characteristic waves: _~_waves, the latency of each wave is different, because they have their own origins. Simple sound (such as short sound, pure tone) induced ABR is widely used in clinical auditory threshold estimation, examining the pathological changes in auditory pathways, estimating the integrity of auditory pathways. Nevertheless, because these simple sounds are so different from the complex sounds we are exposed to in our daily life (such as speech, ambient noise, etc.), their ABR can be used to indicate hearing, but it can not be used to express whether we can understand.
Complex sound in human environment has the characteristics of abundant harmonics and rapid change of frequency information.The encoding of these characteristics in the brain stem is mainly divided into precise time domain encoding and spectrum encoding.The ABR derived from ABR consists of transient response and continuous response.These are closely related to the acoustic characteristics of stimuli.Transient response and non-cyclic response are closely related. Although the short and pure tones represent the transient and persistent response patterns better in their respective ABRs, it is impossible to estimate the ABR induced by complex sounds with both transient and persistent characteristics. The most mature ABR. is the ABR related study of synthetic speech (speech) monosyllabic /da/.
The study of speech-ABR (d a-ABR) induced by 40 ms synthetic speech/d a/contains two parts: transient and persistent, the former being consonant/d/, lasting 10 ms, the latter being vowel/a/, lasting 30 ms. The frequencies of the five formants (F1-F5) are: F0 = 103-121Hz, F1 = 220-720Hz, F2 = 1700-1240Hz, F3 = 2580-2500Hz, F4.5 = 3600-4500Hz.
Speech Evoked ABR (speech-ABR) can be used to study how the acoustic characteristics of stimuli are encoded in the auditory system, and its structure is very similar to the acoustic structure of / DA / and can be divided into transient and persistent parts. Following response (FFR). In which OR (V, A) is a consonant / D / induced response, FFR (D, E, F) is considered to be a periodic part of the vowel / A / induced response in stimulation. In FFR, D, E, F waves are quasi-periodic waves, which are corresponding to quasi-periodic waves d, e, f in / A / respectively, inheriting the periodic characteristics of / A / with a period of about 10 ms. The periodicity of FFR partial time domain waveforms indicates how the brainstem encodes the fundamental frequency information of vowel/a/and the fundamental frequency information. Interest is the most important information for speech recognition, so the degree of speech/a/coding in the brain stem can be judged by the integrity of the D, E and F waves in the speech-ABR time domain. It is difficult to distinguish three quasi-periodic waves intuitively because of the ambiguity of the FFR part. This indicates that signal processing technology should be used to highlight the quasi-periodic wave of the FFR part in time domain, which is helpful for clinical application of the FFR part to judge whether the speech/a/is encoded or encoded intact by the brain stem.
Because of the nonlinearity of auditory system, speech-ABR is a non-linear and non-stationary signal. Hilbert-Huang Transform (HHT) is a well-developed method to deal with non-linear and stationary signals. HHT is divided into two steps: Empirical Mode Decomposition (EMD) and Hilbert (Hilbert). EMD decomposes non-stationary data into a finite number of intrinsic mode functions (IMFs). Each IMF layer is basically a stationary signal, and the IMF oscillation mode at any point in time is unique, that is, the instantaneous frequency is unique. EMD is decomposed according to the local time characteristics of the signal itself, and is adaptive. Speech-ABR original time domain wave. Any point of time in the form may contain multiple instantaneous frequencies, because the three quasi-periodic waves in the FFR part represent the fundamental frequency information of vowels/a/, then their vibration modes should be similar. After EMD, they should be concentrated on the same layer or the same IMF.
An instantaneous energy spectrum method based on Hilbert-Huang transform is proposed to analyze the frequency-following response in speech-ABR. Because speech-ABR faithfully simulates the waveform structure of the stimulus signal and the instantaneous energy based on Hilbert envelope can highlight the extreme value, the instantaneous energy spectrum may be more direct than the original time. In this paper, the experimental results show that this method can highlight the FFR part from speech-ABR, which is conducive to further analysis and clinical application.
(1) The individual speech-ABR is decomposed into empirical mode decomposition (EMD) and a finite number of intrinsic mode functions (IMF) are obtained.
(2) calculate the instantaneous energy spectrum of each layer of IMF.
(3) observe the instantaneous energy spectrum of IMFs after speech-ABR decomposition, and record the number of layers of D, E and F.
(4) The latency and polarity of D, E and F waves in the 17-47 MS instantaneous energy spectrum of the layer are recorded by using a time window of 10 ms.
Twenty-nine adults were recorded for speech-ABR. The procedure consisted of four steps. Firstly, clinical experts identified valid data based on whether the V wave was evident in 25 patients (86%). Secondly, according to whether the FFR part was evident in the valid data, clinical experts divided them into two groups: the typical group (7 cases) and the atypical group (28%). Thirdly, the instantaneous energy spectrum based on HHT was used to process 25 valid data. Finally, clinical experts observed the FFR in the instantaneous energy spectrum of 25 valid data, and found that 23 cases (92%) had significant FFR and 2 cases (8%) could not judge.
The results show that the proposed method highlights the FFR part of the individual speech-ABR and is effective for detecting the FFR part. Compared with the conventional method, this method has two outstanding advantages: (1) the FFR part of the individual speech-ABR is clearly distinguished in the instantaneous energy spectrum than in the speech-ABR time domain waveform; (2) the individual speech-ABR part is clearly distinguished in the instantaneous energy spectrum; (2) the individual speech-ABR part is distinguished in the speech-ABR time domain waveform. The polarity of the quasi-periodic wave in the FFR part is different from that in the FFR part, it can be positive wave, but it is positive wave in the instantaneous energy spectrum.
【学位授予单位】:南方医科大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R318.0
【相似文献】
相关期刊论文 前10条
1 周云龙,刘光远;持续性+Gz作用对清醒家兔脑干听觉诱发电位的影响[J];航天医学与医学工程;1990年01期
2 陈秀伍,刘捤,郭连生,赵小燕,,刘博;耳蜗微音电位增大和延长反应及其临床意义[J];中华耳鼻咽喉科杂志;1994年01期
3 高胜利;黄治物;常伟;李骏;朱素琴;;听力正常青年人骨导听觉稳态诱发反应的测试[J];中国临床康复;2005年45期
4 郎林福;俞道义;沈惠泉;许湘筠;王德法;张红;;视诱发反应与平均视网膜电图同时记录的实验研究[J];眼科新进展;1983年01期
5 刘博,宋本波,刘铤,赵小燕;对听力正常人几种耳声发射基本特性的研究[J];耳鼻咽喉-头颈外科;1996年01期
6 林岩崇,FriderickA.Lenz;肌张力障碍和震颤患者丘脑核团微电刺激诱发反应的对比研究[J];温州医学院学报;1997年01期
7 陈国辉;;缘光瞳孔舒缩周期试验[J];眼科新进展;1982年02期
8 范静平,胡雨田,吕光宇,陆书昌,胡正元;~(60)Coγ线引起的豚鼠听觉损伤[J];第二军医大学学报;1988年04期
9 李兴启,孙建和,孙伟,姜泗长;缺氧豚鼠耳蜗总和电位和形态学实验观察[J];中华耳鼻咽喉科杂志;1994年02期
10 黄志,蔡方成;耳蜗电图在婴幼儿听力障碍诊断中的应用[J];中华儿科杂志;1995年02期
相关会议论文 前10条
1 黄明德;丁超;孙缦利;虞燕琴;;在体自然刺激下的胡须诱发反应的突触可塑性研究[A];浙江省生理科学会2008年学术年会论文汇编[C];2008年
2 饶安伶;DS Holder;;感觉诱发反应的脑电阻抗图[A];生命科学与生物技术:中国科协第三届青年学术年会论文集[C];1998年
3 吴敏范;张雅娟;姚阳;李玉芳;杨宇;滕国玺;;猫扣带回前部内脏与躯体伤害性传入信息的会聚[A];中国生理学会第23届全国会员代表大会暨生理学学术大会论文摘要文集[C];2010年
4 冯艳梅;殷善开;何景春;;高频听力损失对豚鼠间隔诱发反应的影响[A];中华医学会第十次全国耳鼻咽喉-头颈外科学术会议论文汇编(下)[C];2007年
5 黄治物;吴展元;;听觉稳态诱发反应在临床听力评估中的作用[A];中华医学会第十次全国耳鼻咽喉-头颈外科学术会议论文汇编(上)[C];2007年
6 阴正勤;;儿童视觉诱发电位检查及其应用[A];中华医学会第十二届全国眼科学术大会论文汇编[C];2007年
7 王智楠;陈平;徐忠强;龚秋莲;魏翠芬;刘艳;;听力复筛婴儿多频稳态诱发电位和听性脑干诱发电位相关性的比较[A];中华医学会第十次全国耳鼻咽喉-头颈外科学术会议论文汇编(上)[C];2007年
8 黄丽辉;韩德民;莫玲燕;刘辉;陈静;恩晖;蔡正华;亓贝尔;郭连生;;ABR与ASSR在听力筛查未通过婴幼儿听力评估中的作用[A];中华医学会第十次全国耳鼻咽喉-头颈外科学术会议论文汇编(上)[C];2007年
9 陶峥;李蕴;吴皓;;0-6月龄婴幼儿听力障碍诊断标准的探讨[A];中华医学会第十次全国耳鼻咽喉-头颈外科学术会议论文汇编(下)[C];2007年
10 聂文英;林倩;相丽丽;李慧;李应会;戚以胜;;新生儿听力损失程度波动特性及其影响因素[A];中华医学会第十次全国耳鼻咽喉-头颈外科学术会议论文汇编(下)[C];2007年
相关重要报纸文章 前4条
1 胡翔龙 许金森 吴宝华 杨广应 张福强;循经感传的形成机理[N];中国中医药报;2004年
2 王智楠;请关注幼儿听力[N];健康报;2006年
3 实习生 江恰 曾洋;维护女性健康 托起美好未来[N];盘锦日报;2008年
4 薛崇成;不是否定是肯定[N];中国中医药报;2005年
相关博士学位论文 前5条
1 干德康;巩膜内型人工视觉假体的开发可行性、生物相容性和稳定性的初步研究[D];复旦大学;2004年
2 李克勇;听觉系统声诱发反应的磁声场记录[D];中国协和医科大学;1996年
3 黄晓媛;针刺头穴治疗大鼠三叉神经痛样反应模型的实验研究[D];黑龙江中医药大学;2007年
4 李崖雪;电针下关穴、地仓穴治疗大鼠三叉神经痛的实验研究[D];黑龙江中医药大学;2006年
5 陈波;急性酒精暴露对猫初级视皮层神经元反应特性的影响[D];中国科学技术大学;2010年
相关硕士学位论文 前10条
1 郎小娥;外伤性听觉损害听力学评价的临床研究[D];山西医科大学;2004年
2 李国臣;电针改善前庭功能障碍所致颈性眩晕的实验研究[D];成都中医药大学;2004年
3 黄明德;触须自然刺激诱发的桶状皮层反应可塑性及其机制[D];浙江大学;2010年
4 梁浩;刺激隐神经对猫扣带回前部神经元细胞内电位的影响[D];吉林大学;2008年
5 张雅娟;猫扣带回前部内脏与躯体伤害性传入信息的会聚[D];吉林大学;2009年
6 孙缦利;星形胶质细胞在桶状皮层功能及可塑性中的作用[D];浙江大学;2011年
7 徐超仁;基于DSP的嵌入式ASSR检测仪的研究与设计[D];厦门大学;2007年
8 孟萃珍;40-Hz听稳态指数与脑电双频指数对麻醉深度监测的比较[D];首都医科大学;2007年
9 马文;婴幼儿大前庭导水管综合征CT影像和听力学特点[D];山东大学;2010年
10 王海涛;猫初级视皮层细胞年龄相关的功能衰退与形态学变化研究[D];安徽师范大学;2004年
本文编号:2222219
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2222219.html