基于神经影像的多尺度动态有向连接理论与算法研究
[Abstract]:The brain is a balance of structural separation but functional integration, and it is also a classical example of complex systems. People are keen to use complex networks to study the complex human brain system. The dynamics of different space-time scales and the corresponding network structure evolution process.
Understanding the complex network topology of the brain at the anatomical and functional levels is by far the biggest challenge. In addition to using anatomical structural connections (usually referred to as white matter fascicles), many effective methods have been developed to infer brain connections. Another important method is Effective Connection (EC), which attempts to reveal the directed information transmission mechanism in the brain region. In recent years, many algorithms have been developed to detect effective connections, based on data-driven Granger. Causality (GC) is one of the powerful and effective tools.
One of the main problems in GC computing is how to deal with multivariate redundancy and confusion information; this problem is the biggest obstacle to the application of GC in neural image data sets, and the full context is centered around this thread. In addition, we also apply these algorithms to the data of specific problems, such as cognitive tasks or patients, to provide a new idea for understanding brain function and its abnormal mechanism.
This paper mainly includes three parts:
In the first part, a causal algorithm based on canonical correlation is used to reconstruct a small-scale dynamic network (a small number of network nodes, 100-102 levels). In order to detect the information interaction between multivariate/group/module, a canonical correlation GC algorithm is proposed to mine the rich information hidden at the bottom of the network from the individual level to the group level. The traditional autoregressive model estimates eliminates the effect of transient synchronous interaction on causal inference. After successful testing of the simulation data, it is used to analyze the EEG data (synchronous scalp and deep EEG) of an epileptic patient during the interval of the seizure, and the results reasonably explain the clinical symptoms associated with the seizure. The second chapter).
Physiological signals often show nonlinear dynamic characteristics, which limits the effectiveness of the above linear canonical correlation GC algorithm. In this paper, we propose a kernel function technique (projecting data into a higher dimensional feature space), which extends the canonical correlation GC algorithm to estimate nonlinear causal interactions. After testing its feasibility and validity, it is further applied to the EEG data of epileptic patients to reconstruct the spatiotemporal connection network with both linear and nonlinear causal interactions, which provides a new detection method for exploring the information transmission path during epileptic seizures (Chapter 3).
In the second part, we focus on the redundancy and dimensionality disasters faced by reconstructing mesoscale networks (large number of network nodes, 102-103 levels). This network scale corresponds to the scale of traditional cerebral cortex segmentation. Most of the brain networks constructed by functional magnetic resonance imaging (fMRI) are based on the blood-oxygenat (BOLD) of voxel average in the segmentation region. The standard conditional GC (CGC) is no longer suitable for reconstructing large-scale networks with this kind of signals. This paper presents a technique for selecting conditional variables (i.e. partially conditional GC, partia) based on the principle of carrying the information of driving variables. Lly conditioned GC (PCGC). This method is successfully applied to simulation data and high-density EEG.
In addition, there is another key problem in BOLD time series: the confusion effect of hemodynamic response function (HRF). To solve this problem, a novel blind deconvolution technique for BOLD-fMRI signals (Chapter 4) is proposed to infer inter-regional causes at the level of saphenous nerve. Fruit interaction.
By combining the two methods (blind deconvolution and PCGC), the dynamic directed information interaction in resting state can be more effectively inferred; the analysis results show that deconvolution will affect the local topological characteristics of the brain network. In addition, the analysis results also show that the conditional variable aggregation obeys a robust spatial distribution (with modularity). This distribution is not affected by scanning time (TR), repetition time (TR), 0.645s, 1.4s and 2.5s) (Chapter 5), which lays a foundation for further extending PCGC to the voxel level to construct a directed network.
The third part is the construction of large-scale (massive network nodes, 104 and above) networks, which corresponds to the order of magnitude of voxels in fMRI data. It is a typical example of building complex large-scale networks with massive data. The algorithm not only reduces the dimension of conditional variables, but also eliminates the influence of redundancy. By applying graph theory methods (such as degree, centrality and clustering coefficient), the topological features of voxel-level brain dynamic networks are described (Chapter 6), which opens a new chapter in understanding information transmission in the brain using fMRI.
After constructing the theory of directed networks of different scales, we applied it to the resting functional magnetic resonance imaging data of handedness to explore how handedness shapes resting human brain.
【学位授予单位】:电子科技大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:R310;O157.5
【共引文献】
相关期刊论文 前10条
1 常文利;;Influence of Blurred Ways on Pattern Recognition of a Scale-Free Hopfield Neural Network[J];Communications in Theoretical Physics;2010年01期
2 S.Boccaletti;V.Latora;Y.Moreno;M.Chavezf;D.-U.Hwang;方爱丽;赵继军;;复杂网络:结构和动力学[J];复杂系统与复杂性科学;2007年01期
3 张方风;陈春辉;姜璐;;基于复杂网络的大脑功能连接研究[J];复杂系统与复杂性科学;2011年02期
4 周珂;蔡洁;熊刚强;;两种VBM算法对阿尔茨海默病磁共振图像诊断价值的比较[J];广东医学院学报;2013年05期
5 董宇航;岑松原;;利用贝叶斯方法提高光谱仪的测量准确度[J];光子学报;2013年12期
6 张方风;郑志刚;;复杂脑网络研究:现状与挑战[J];上海理工大学学报;2012年02期
7 梁夏;王金辉;贺永;;人脑连接组研究:脑结构网络和脑功能网络[J];科学通报;2010年16期
8 李延龙;贾利平;陈辉;;Hindmarsh-Rose神经元模型在小世界网络里的非线性耦合[J];兰州大学学报(自然科学版);2012年01期
9 方小玲;于洪洁;;复杂脑网络研究进展[J];力学进展;2007年04期
10 吴麟;龚洪翰;周福庆;张悦;张宁;;DTI联合ReHo在复发-缓解型多发性硬化患者海马区的研究[J];临床放射学杂志;2013年10期
相关会议论文 前1条
1 Li Shunan;Li Donghui;Deng Bin;Wei Xile;Wang Jiang;Wai-Loc Chan;;A Novel Feature Extraction Method for Epilepsy EEG Signals Based on Robust Generalized Synchrony Analysis[A];第25届中国控制与决策会议论文集[C];2013年
相关博士学位论文 前10条
1 樊令仲;基于MRI及薄层断面解剖数据的人类小脑结构分析[D];山东大学;2010年
2 郭大庆;复杂神经系统中信息传输及信息处理的若干问题研究[D];电子科技大学;2011年
3 李诺;针刺对脑功能影响的数据采集与分析[D];天津大学;2010年
4 戴慧;原发性开角型青光眼的3TMR功能磁共振研究[D];华中科技大学;2011年
5 姚志军;轻度认知障碍和阿尔兹海默病脑形态异常的磁共振影像研究[D];兰州大学;2011年
6 廖伟;基于磁共振成像的脑连接方法学及应用研究[D];电子科技大学;2011年
7 赵刚;复杂化学体系中若干非线性动力学问题的研究[D];中国科学技术大学;2006年
8 汪茂胜;耦合动力系统中若干复杂性和非线性问题的研究[D];中国科学技术大学;2007年
9 任华;偏执型精神分裂症患者N-back任务和静息状态脑功能连接差异的fMRI研究[D];天津医科大学;2007年
10 常文利;复杂网络上神经元系统对刺激的响应[D];兰州大学;2007年
相关硕士学位论文 前10条
1 王静怡;小鼠内侧中隔神经元放电模式与海马Theta节律的关系[D];华东师范大学;2011年
2 李芳;基于Matlab的自由活动大鼠局部场位电的采集与分析[D];山东科技大学;2011年
3 吴惠华;基于复杂网络的癫痫分析与电刺激抑制[D];燕山大学;2007年
4 郑鸿宇;复杂生物神经网络的建模及其动力学特性研究[D];广西师范大学;2008年
5 曾红丽;复杂网络上的自组织临界性[D];南京航空航天大学;2009年
6 甄先通;基于磁共振影像的阿尔茨海默病脑皮层厚度分析的研究[D];兰州大学;2010年
7 王振华;基于FDG-PET的脑功能分析及临床应用[D];兰州大学;2010年
8 朱成钰;局部缺血性中风,大脑发育及老化的皮层信息传递网络的研究[D];上海交通大学;2010年
9 张弘;汉字心理旋转的皮层相互作用网络[D];上海交通大学;2010年
10 秦云;脑电的脑网络方法及应用研究[D];电子科技大学;2010年
本文编号:2227069
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2227069.html