当前位置:主页 > 医学论文 > 生物医学论文 >

生物材料压电微液滴喷射工艺研究

发布时间:2018-09-17 14:07
【摘要】:组织工程,又叫再生医学,通常指利用生物活性物质,通过体外培养或构建的方式,再造或者修复组织及器官的技术。随着相关技术的不断进步,组织工程学已经由最初的无细胞单一生物材料构建向更复杂更真实的多细胞微环境构建发展。生物3D打印作为最重要的组织工程体外构造技术,在打印精度、可控性和打印体中细胞成活率控制方面亟需获得更大的突破。本文以压电喷射3D打印在组织工程中的应用为研究目的,分析了不同压电陶瓷驱动器的振动模式,选用陶瓷-铜片复合式元件作为膜片式压电喷头的驱动器,喷头内腔采用优化改进设计的圆锥形截面;剖析传统管式压电喷头的结构并分析其流体喷射过程中的能量损失和无法喷射高粘度材料的原因,并给出了优化改进型的管式压电喷头设计方案和器件选型。两种喷头均采用易拆装独立封装式玻璃喷嘴。设计制作热拔式玻璃喷嘴拉制仪。喷头背压系统选用正向压力控制。使用低帧率CCD相机,搭建高速微液滴检测系统。对压电喷射时流体材料的喷出过程和喷头驱动参数进行试验研究。利用压电喷头试验了多种粘度值的材料,建立最低驱动电压与粘度值之间的关系曲线。总结了喷射试验过程中卫星滴现象和斜射流现象,并研究了两种异常现象与驱动参数的选择和喷嘴孔径轮廓形状的规整度之间的关系。选用膜片式压电喷头,喷射浓度为0.5%的海藻酸钠,研究了一定范围内驱动信号的脉冲幅值、脉冲宽度和脉冲频率对压电喷射时的微液滴小球的直径和速度的影响。分析海藻酸钠的固化机理,对不同浓度值的材料进行试验研究并分析微液滴的固化后形态,以坍塌程度为评价标准对材料浓度进行正交试验并得出最优浓度方案。定性分析并给出了降低模型打印坍塌程度的固化打印方案。依据正交试验的结论和打印方案,利用管式压电喷头进行生物模型3D结构打印,获得了结构完整,尺寸较准确,坍塌程度较低的生物模型三维结构。验证了正交试验结论的准确可行性和压电喷头生物打印的可靠性。
[Abstract]:Tissue engineering, also known as regenerative medicine, usually refers to the technology of reconstructing or repairing tissues and organs by using bioactive substances through in vitro culture or construction. With the development of related technology, tissue engineering has been developed from the original cell-free single biomaterial construction to the more complex and realistic multicellular microenvironment construction. As the most important technology of tissue engineering in vitro, biological 3D printing is in need of more breakthrough in printing accuracy, controllability and cell survival rate control in print body. In order to study the application of piezoelectric spray 3D printing in tissue engineering, the vibration modes of different piezoelectric ceramic actuators are analyzed in this paper. The ceramic / copper composite elements are selected as the actuator of diaphragm piezoelectric sprinklers. The conical section of the nozzle cavity is optimized and improved, the structure of the traditional tubular piezoelectric sprinkler is analyzed, and the energy loss during the injection process and the reason why the high viscosity material can not be sprayed are analyzed. The design scheme and device selection of the optimized and improved tubular piezoelectric sprinkler are also given. The two kinds of nozzle are easy to disassemble and package glass nozzles. Design and manufacture hot-drawn glass nozzle drawing instrument. The back pressure system of nozzle is controlled by forward pressure. A high-speed micro-droplet detection system is built with low frame rate CCD camera. The ejection process and nozzle driving parameters of piezoelectric injection were studied experimentally. The materials with various viscosity values were tested by piezoelectric sprinkler, and the relation curve between the lowest driving voltage and viscosity value was established. The phenomena of satellite droplet and oblique jet flow in jet test are summarized. The relationship between the two abnormal phenomena and the selection of driving parameters and the regularity of nozzle aperture profile is studied. The effects of pulse amplitude, pulse width and pulse frequency of driving signal on the diameter and velocity of microdroplet pellets during piezoelectric injection were studied by using a diaphragm piezoelectric nozzle with 0.5% sodium alginate concentration. The solidification mechanism of sodium alginate was analyzed, and the solidified morphology of microdroplets was studied by experiments on materials with different concentrations. The concentration of the materials was tested by orthogonal test and the optimal concentration scheme was obtained according to the degree of collapse as the evaluation standard. The curing printing scheme to reduce the collapse degree of model printing is analyzed qualitatively. According to the conclusion of orthogonal experiment and printing scheme, the 3D structure of biological model was printed with tubular piezoelectric sprinkler. The 3D structure of biological model with complete structure, accurate size and low collapse degree was obtained. The accuracy and feasibility of the results of the orthogonal test and the reliability of the biological printing of the piezoelectric sprinkler are verified.
【学位授予单位】:沈阳理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R318.08

【参考文献】

相关期刊论文 前10条

1 徐_";;生物3D打印的产业化机遇[J];中国工业评论;2015年05期

2 齐乐华;钟宋义;罗俊;;基于均匀金属微滴喷射的3D打印技术[J];中国科学:信息科学;2015年02期

3 王镓垠;柴磊;刘利彪;赵欣如;许雨帆;周新伟;张伟明;王小红;;人体器官3D打印的最新进展[J];机械工程学报;2014年23期

4 刘媛媛;张付华;陈伟华;严飞飞;郑璐璐;胡庆夕;;面向3D打印复合工艺的生物CAD/CAM系统及试验研究[J];机械工程学报;2014年15期

5 李小丽;马剑雄;李萍;陈琪;周伟民;;3D打印技术及应用趋势[J];自动化仪表;2014年01期

6 江洪;康学萍;;3D打印技术的发展分析[J];新材料产业;2013年10期

7 王萍;;3D打印及其教育应用初探[J];中国远程教育;2013年08期

8 林峰;;生物3D打印技术的四个层次[J];信息技术时代;2013年06期

9 贺超良;汤朝晖;田华雨;陈学思;;3D打印技术制备生物医用高分子材料的研究进展[J];高分子学报;2013年06期

10 王忠宏;李扬帆;张曼茵;;中国3D打印产业的现状及发展思路[J];经济纵横;2013年01期

相关会议论文 前1条

1 王运赣;张祥林;;功能器件的自由成形—试论再创RP的新辉煌[A];第13届全国特种加工学术会议论文集[C];2009年

相关博士学位论文 前1条

1 谢丹;微光学器件的气动膜片式微滴喷射制造技术研究[D];华中科技大学;2010年

相关硕士学位论文 前2条

1 韩炜强;面向3D生物打印的微压电喷射技术研究[D];哈尔滨工业大学;2014年

2 吴森洋;微液滴喷射成形的压电式喷头研究[D];浙江大学;2013年



本文编号:2246167

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/swyx/2246167.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a6085***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com