额外负重结合高频率低载荷振动对大鼠骨力学性能的影响
[Abstract]:The morphological structure of bone is suitable for its function. The mechanical environment at the bone has a significant effect on its morphological structure and mechanical properties. In addition to the mechanical environment, the drug can also influence the morphological structure and mechanical properties of the bone. But long-term administration may have side effects. It is necessary to explore the effect of non-drug and non-invasive therapy on the mechanical properties of bone. The effects of high frequency low load vibration and extra load training on the mechanical properties of bone were studied in a large number of previous studies. Because these high-frequency low-load vibration studies differ in the length of experiment, the result of the test and the applicable conditions, there are different conclusions in the analysis of the effect. The additional weight-bearing training, i.e., relative daily life can generate greater stress to the bone, contributes to the accumulation of bone mineral content and the increase of bone volume, and affects the mechanical properties of the bone. However, the effect of receiving high-frequency low-load vibration stimulation at the same time of extra weight is little known. This study is useful for researchers to understand the mechanism of additional weight-bearing and high-frequency low-load vibration on bone. The purpose of this study was to explore the effects of additional weight-bearing combined with high-frequency low-load vibration on bone in growth phase from macroscopic, microscopic and nano-scales. Twenty-one-month-old female Wistar rats were randomly divided into 10 groups, namely, sedentary group (SED), negative recombination (Wbx, x = 5, 12, 19, 26), basic vibration group (V), and weight-bearing vibration group with additional weight (x = 5, 12, 19, 26). The frequency and acceleration of the vibration were 45 Hz and 0.3 g, respectively. The experiment was carried out for 12 weeks, 7 days a week, 15 minutes a day. The weight of the rat was accurately measured the day before the experiment to determine the weight of the negative backpack in the first week. Subsequently, the body weight of the rats was measured at the weekend of the week and re-weighed for the backpack. After 12 weeks, rats were sacrificed, serum and left femur were collected. The contents of anti-tartaric acid phosphatase (5b, TRAP5b), alkaline phosphatase (ALP), calcium (Callum, Ca) and phosphorus (P) in serum were analyzed quantitatively. For the left femur obtained, the macroscopic mechanical properties of femoral head were examined by three-point bending mechanics experiment, and the microstructure of femoral head cancellous bone and femoral shaft cortical bone was evaluated by micro-computed tomography (micro-CT). Using nano-indentation test technology to test the mechanical properties of bone materials at the nano-view scale. The results showed that the macroscopic mechanical properties, microstructure and nano-view mechanical properties of SED group were better than that of SED group (P0.05). The microstructures of group V19 (x = 5, 12, 19, 26) were poor, and the content of TRAP5b in serum was significantly higher than that in SED group (P0.05). The mechanical properties of nano-view materials in V26 group are better. The body weight of SED group was highest and significantly higher than that in V5 group, V19 group and V26 group (P0.05). The results obtained in this study: (1) The additional weight-bearing and high-frequency low-load vibration did not play an active role in the microstructure of growth phase bone; meanwhile, with the increase of weight, the microstructure of bone was negatively affected. The effect of extra load on the microstructure of growth phase bone is not big; with the increase of extra weight, the micro-morphological structure parameters will be affected, but not enough to cause significant change in macroscopic mechanical properties. (2) The high-frequency low-load vibration of extra weight load failed to improve the mechanical properties of the bone nano-scale. However, when the extra load is higher, such as 26% of weight bearing weight, the additional weight-bearing combined with high-frequency low-load vibration is more favorable for improving the mechanical properties of the nano-scale of bone material. (3) Appropriate additional loading, combined with high frequency low load vibration, helps to reduce body weight. Body weight reduction not only affects bone mineral density (BMD), but also affects microscopic structure parameters bone volume fraction (BV/ TV), bone small beam thickness (Tb. Th) and bone trabecula separation (Tb. Sp).
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R318.01
【相似文献】
相关期刊论文 前10条
1 董心;马洪顺;朱兴华;施德广;赵梅生;;软组织材料—角膜的力学性能研究[J];试验技术与试验机;1989年04期
2 赵梅生;李桂荣;董心;;人眼角膜的力学性能研究[J];试验技术与试验机;1997年Z1期
3 姜洪丽;刘欣;王晓鹏;李斌;;木塑复合材料表面性能对力学性能的影响[J];泰山医学院学报;2008年04期
4 曹艳平;郑修鹏;冯西桥;;基于屈曲方法测量生物纤维的力学性能[J];医用生物力学;2009年S1期
5 严洪海,文学军,赵士芳;表面等离子渗氮处理钛的生物相容性评价──1.表面分析及力学性能评价[J];中国口腔种植学杂志;1996年02期
6 巢永烈,丁旭艳,梁星,韩晓莉;粉末冶金制作钛合金试件的力学性能测试[J];上海口腔医学;2001年02期
7 汪焰恩;魏庆华;杨明明;魏生民;;PVP/PVA水凝胶力学性能的分子动力学模拟[J];医用生物力学;2014年02期
8 于思荣,张新平,何镇明,高忠民,王翠妍;Ce对Ti-Fe-Mo-Mn-Nb-Zr合金组织与力学性能的影响[J];生物医学工程学杂志;2004年01期
9 史雪婷;徐立新;杨云龙;;聚磷酸钙纤维分布形态对磷酸盐骨水泥力学性能的影响[J];兰州理工大学学报;2013年02期
10 王西明;周永军;张辉;;穴位组织的力学性能及行针过程针体所受阻力分析[J];咸阳师范学院学报;2013年04期
相关会议论文 前10条
1 陈众迎;龙连春;;三维编织复合材料的力学性能研究现状[A];北京力学会第15届学术年会论文摘要集[C];2009年
2 陈青;卢嘉德;胡良全;;酚醛树脂结构与高温力学性能相关性的探索研究[A];复合材料:生命、环境与高技术——第十二届全国复合材料学术会议论文集[C];2002年
3 黄玉亭;杨勇新;李平;顾习峰;王明明;;纤维增强复合材料格栅力学性能测试与评估[A];第十八届玻璃钢/复合材料学术年会论文集[C];2010年
4 张小英;;土壤填埋降解后丝素纤维的微观结构和力学性能[A];苏州市自然科学优秀学术论文汇编(2008-2009)[C];2010年
5 王玉金;周玉;宋桂明;黄智恒;雷廷权;;钨丝增强钨基复合材料的组织与力学性能[A];2000年材料科学与工程新进展(下)——2000年中国材料研讨会论文集[C];2000年
6 徐献忠;施力;刘雯雯;刘大全;郭惠丽;库丹;;食品的力学性能与人类咬合过程参量的关系[A];中国力学大会——2013论文摘要集[C];2013年
7 罗靓;张佐光;张立功;孙志杰;;复合材料层板预夹杂质对力学性能的影响[A];2004年材料科学与工程新进展[C];2004年
8 滕雅娣;舒燕;母继荣;李旭日;;辽宁建平产膨润土对甲基乙烯基硅橡胶力学性能的影响[A];2007年全国高分子学术论文报告会论文摘要集(下册)[C];2007年
9 高丽兰;陈旭;高红;;各向异性导电胶膜的力学性能研究[A];中国力学大会——2013论文摘要集[C];2013年
10 卢国兴;阮冬;;蜂窝铝材料的力学性能研究[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
相关重要报纸文章 前4条
1 ;热轧带钢力学性能在线监控系统(待续)[N];世界金属导报;2001年
2 王华;大厚度海洋平台用钢的组织和力学性能[N];世界金属导报;2013年
3 余万华;CQE-热轧钢卷的力学性能控制模型[N];世界金属导报;2009年
4 本报记者 朱祝何;技术规范更接“地气”[N];中国质量报;2013年
相关博士学位论文 前10条
1 赖长亮;复合材料格栅结构力学性能分析与制备[D];西北工业大学;2015年
2 朱天彬;镁碳耐火材料组成、结构与力学性能研究[D];武汉科技大学;2015年
3 秦利军;三维编织C/C复合材料关键基础力学性能研究[D];中国科学技术大学;2013年
4 任小勇;地质工程用高性能无钴硬质合金的制备、结构及力学性能研究[D];中国地质大学(北京);2016年
5 高岩;多轴向三维机织复合材料细观结构与力学性能研究[D];天津工业大学;2016年
6 竺鑫桥;海胆牙齿ST区纳米结构、力学性能及变形机制的研究[D];浙江大学;2016年
7 段书用;面向车身应用的LGFRP复合材料制备工艺及力学性能研究[D];湖南大学;2016年
8 梁存;粉末热机械固结法制备块体金属材料(钛、铝、铜)的显微结构和力学性能研究[D];上海交通大学;2015年
9 谢娟;针织物传感器双向延伸电—力学性能及肢体动作监测研究[D];东华大学;2015年
10 赵卫哲;γ射线辐照对聚丙烯腈纤维环化交联及碳纤维结构与性能的影响[D];东华大学;2016年
相关硕士学位论文 前10条
1 裴旺;磁控溅射制备V-Al-Ta-N四元涂层结构及其性能研究[D];昆明理工大学;2015年
2 刘磊;抗冲击碳化硅基复合材料的制备与力学性能研究[D];河北联合大学;2014年
3 蔡宝壮;超细晶铜基合金塑性变形机理及力学性能的研究[D];昆明理工大学;2015年
4 关倩倩;持荷受火叠合柱在爆炸冲击波作用下力学性能数值模拟[D];燕山大学;2015年
5 时萌蒙;重组方材两种原材料疏解干燥工艺研究[D];西北农林科技大学;2015年
6 唐伟文;穿山甲鳞片宏-微观力学性能表征及其耐冲击性仿真[D];西南交通大学;2015年
7 鲁婷菊;纤维素增强聚合物复合材料的制备与力学性能研究[D];西南交通大学;2015年
8 尹晓君;含Ca、Sb的Mg-xAl-yZn-zSi合金组织与性能研究[D];陕西理工学院;2015年
9 张雨溪;改性陶瓷粉体对铸造锌铝合金组织及性能影响的研究[D];大连交通大学;2015年
10 刘玲丽;变面循环轧制AZ31镁合金微观组织与力学性能研究[D];南京理工大学;2015年
,本文编号:2260926
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2260926.html