抗蛋白质非特异性吸附材料内在机理和特性的研究
[Abstract]:Anti-protein non-specific adsorption materials can effectively reduce the surface protein adsorption and improve the biocompatibility of the materials. The long effect and stability of traditional polyethylene glycol (PEG) materials in complex biological environments are very limited. It has been found that PEG molecules can activate part of human immunity, and the drug activity of PEG modified proteins is decreased sharply. Amphoteric materials such as polymethacryloxy ethyl phosphatidylcholine (pMPC).) Polysulfonbetaine methacrylate (pSBMA) and polycarboxybetaine methacrylate (pCBMA) have more and more long-lasting biocompatibility than PEG. Therefore, the study of the mechanism of anti-protein nonspecific adsorption by PEG and amphoteric ion materials is not only helpful to understand the mechanism of anti-protein adsorption, but also to select suitable anti-protein non-specific materials. It is also helpful to design and find better anti-protein non-specific adsorption materials. Based on the intrinsic mechanism and properties of non-specific anti-protein adsorption materials, a low-field NMR methodology was established to investigate the different hydration capacities of PEG and the representative amphoteric polymer pSBMA. And the interaction of macromolecular PEG with protein, and further explore the different interaction characteristics of long-chain PEG and pSBMA compared with PEG and protein under the condition of solution. Finally, the diffusion of proteins in hydrogels was designed to directly reflect the different interaction forces between PEG and SBMA. The main contents and conclusions include the following six parts: 1. The T 2 transverse relaxation time is obtained by using the CPMG sequence of PEG aqueous solution with different concentrations collected by low field NMR, and the tightly bound water molecular weight of PEG is calculated quantitatively. The results show that a EG unit is combined with a water molecule and verified by DSC method. At the same time, the physical behavior of the chain segments in the dissolution process of the polymer was tracked. 2. The low field NMR T2 inversion technique was used to quantitatively study the different hydration capacities of pSBMA and PEG and the states of water molecules around the materials. It is proved that each unit of pSBMA binds more water than PEG (SB-8, EG-1), and that the water molecules in the hydration layer of pSBMA are arranged more closely than PEG. However, after the formation of saturated water layer, the water molecules around pSBMA are freer than those around PEG. 3. The interaction between PEG with different molecular weight and protein was quantitatively studied by using T2 inversion technique of low field nuclear magnetic field. It was found that there was a strong interaction between PEG and protein in solution, and the interaction was related to the molecular weight of PEG and the type of protein. The binding constants of PEG and protein were calculated quantitatively from 104 to 105M-1.4. High field nuclear magnetic resonance (HNMR) and atomic force microscopy (AFM) were used to study the interaction between PEG and protein with different molecular weight and its effect on the binding region. It is proved that the interaction between PEG and protein is closely related to the molecular weight. Because of its high hydrophilicity and short molecular chain, small molecular weight PEG (400Da) cannot form multi-point contact with protein. Therefore, the interaction force with protein molecules was reduced sharply. 5. The different interactions between pSBMA and PEG with large molecular weight were studied by fluorescence, high field nuclear magnetic resonance and atomic force microscopy. It proves that the interaction between pSBMA and protein is not obvious. The hydrophobic interaction between PEG and protein may lead to the change of protein molecular structure. 6. The diffusion behavior of fluorescent labeled proteins in hydrogels with different ratios of PEG and SBMA was studied. It is found that the diffusion rate of protein molecules in PEG hydrogels is obviously lower than that in SBMA hydrogels, which further proves that there is a large interaction between PEG and proteins, while there is almost no interaction between SBMA and proteins.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:R318.08;TQ424
【共引文献】
相关期刊论文 前8条
1 张长利;杨宏;王景晶;梅青;;不同添加剂对聚乙烯醇固定化锰氧化细菌的影响[J];北京工业大学学报;2013年11期
2 张恒;胡立梅;蔺存国;王利;苑世领;;溶菌酶蛋白与聚合物防污膜相互作用的分子动力学模拟[J];高分子学报;2014年01期
3 魏秀珍;孔新;王松雪;杨佳;陈金媛;;两性离子在高分子膜改性及提高膜抗污染性中的研究进展[J];功能材料;2014年02期
4 梁嘉达;王方娴;陈新冬;陈晓红;周健;;羧酸甜菜碱甲基丙烯酸酯与DNA组装体系的耗散粒子动力学模拟[J];广东化工;2014年05期
5 Li-Jun Liu;Wen-Duo Chen;Ji-Zhong Chen;Li-Jia An;;Tumbling dynamics of individual absorbed polymer chains in shear flow[J];Chinese Chemical Letters;2014年05期
6 黄丹;郑甜甜;刘蕊;班允赫;张阳;;超滤膜改性技术及其抗污染性能的研究[J];辽宁化工;2013年10期
7 ZHANG ShiYong;WU Yao;HE Bin;LUO Kui;GU ZhongWei;;Biodegradable polymeric nanoparticles based on amphiphilic principle:construction and application in drug delivery[J];Science China(Chemistry);2014年04期
8 李凤英;何京;钟海军;;细胞穿透肽的研究进展[J];中国新药杂志;2013年15期
相关会议论文 前1条
1 周健;;药物与基因传递体系自组装的计算机模拟[A];中国化学会第十四届胶体与界面化学会议论文摘要集-第5分会:胶体与界面化学中的理论问题[C];2013年
相关博士学位论文 前10条
1 王涛;若干典型高分子体系的离子特异性效应[D];中国科学技术大学;2013年
2 段晓品;刺激响应性聚合物胶束在抗肿瘤转移及逆转肿瘤耐药中的应用[D];沈阳药科大学;2013年
3 郑军;聚合物化学性质和表面拓扑结构对内皮细胞黏附的影响[D];武汉理工大学;2013年
4 刘云鸿;仿生抗生物黏附表面的设计、制备与性能研究[D];华南理工大学;2013年
5 张孝进;功能化脂肪族聚碳酸酯的合成及其性能研究[D];武汉大学;2012年
6 孙俊;聚乙烯亚胺衍生物的合成及其作为核酸载体的性能探讨[D];华南理工大学;2013年
7 袁勃;两性离子嵌段共聚物结构设计、制备及其生物相容性研究[D];南京大学;2012年
8 涂琴;功能聚合物界面构建及其在生命分析中的应用[D];西北农林科技大学;2013年
9 黄国锋;组织工程化羊膜促进表皮细胞扩增和真皮重建的实验研究[D];第二军医大学;2013年
10 郑志雯;生物医用聚合物材料表面功能化构建及抗蛋白吸附研究[D];华南理工大学;2013年
相关硕士学位论文 前10条
1 赵静;新型两亲性药物载体的合成及表征[D];郑州大学;2013年
2 施龙敏;基于DOPA粘附作用的抗生物垢材料的制备与表征[D];北京化工大学;2013年
3 卞姣;ROP/ATRP联用制备基于聚磷酸酯的嵌段共聚物及其应用研究[D];苏州大学;2013年
4 谢槟;多巴胺与肝素共混构建抗凝/促内皮多功能薄膜的研究[D];西南交通大学;2013年
5 魏嵬;分层多功能层层自组装肝素表面涂层的制备和血液相容性检测[D];北京协和医学院;2013年
6 焦燕;水蛭素多肽改性丙烯酸系人工晶状体及其性能的研究[D];华南理工大学;2013年
7 刘红艳;抗生物污染材料载药体系的介观模拟[D];华南理工大学;2013年
8 郭泓雨;刺激响应型聚合物材料的耗散粒子动力学模拟研究[D];华南理工大学;2013年
9 简浩良;羧基甜菜碱修饰的聚乙烯亚胺作为非病毒型基因载体[D];华南理工大学;2013年
10 陈庭怡;GLP-1四聚体药物蛋白的制备及其药代动力学和药效学的研究[D];福建农林大学;2013年
,本文编号:2267486
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2267486.html