羧甲基壳聚糖基复合材料的制备及在骨缺损修复应用方面的研究
[Abstract]:Methyl chitosan (CMCS) is a methylating product of chitosan, can be dissolved in water, has the characteristics of good biocompatibility, biodegradability, pH sensitivity, and can be used for binding Ca2 + to have bone activity and the like, and has been widely used in the field of tissue repair. The new bone defect repair material is one of the hot spots in recent years, and several kinds of composite materials have been prepared on the basis of CMCS, and the feasibility of the related materials for the repair of bone tissue defects is also studied. The main contents of the study are as follows: First, the CMCS has the characteristics of good water solubility and easy to form, and the composite membrane of CMCS and silk fibroin (SF) is prepared, and the cross-linking of CMCS and silk fibroin (SF) is carried out. The results show that the SF in the composite membrane has a crystalline transformation, and the silk I crystal structure is transformed into a silk II crystal structure. The composite membrane has good hydrophilicity and is beneficial to the adhesion and proliferation of bone marrow mesenchymal stem cells in mice. The CMCS/ HA composite was prepared by controlling the deposition of hydroxyapatite (HA) by CMCS in hydrothermal reaction. The effect of CCS concentration and reaction temperature on the morphology of HA particles was discussed. The results showed that, with the increase of CMCS, the change of the rod-like structure was observed, and the effect of temperature on the morphology of HA was small. The results of the thermal analysis show that the CMCS content in the composite is 15%, 20%, 25% and 25%, respectively, when the CCS concentration in the reaction solution is 0.1%, 0.2%, 0.4%, 0.6%, respectively. The composite material has good hydrophilicity and biocompatibility, and the cell experiment shows that the material is beneficial to the adhesion and proliferation of bone marrow mesenchymal stem cells. In order to simulate the nano-fiber morphology of the extracellular matrix, the CMCS nanofiber scaffold was prepared by electrostatic spinning. The water-soluble, water-based solvent based on CMCS avoids the potential biological safety problems caused by the use of organic solvents. The surface tension of the solution is reduced by the addition of polyethylene oxide (PEO), and the effect of the spinning process voltage and the PEO molecular weight on the morphology of the nano-fiber is studied in detail. The results show that the PEO molecular weight is 1 million and the voltage is 25kV, and the nano-fiber with good morphology can be obtained. In order to further improve the bone-forming activity of the nanofibers, the CMCS/ calcium phosphate (CaP) composite nanofibers were prepared by biomimetic mineralization in 5-fold simulated body fluid (5-SBF). Cytological experiments show that the nano-fibers before and after mineralization are beneficial to the adhesion and proliferation of the cells, and the mineralized nano-fibers can promote the expression of alkaline phosphatase in the cells. The expression of bone markers (ALP, Runx-2, OCN and COL) can be promoted by RT-PCR, which is more beneficial to the differentiation of bone marrow mesenchymal stem cells into osteoblasts. The bone repair ability, micro-CT, hematoxylin-eosin staining (HE staining) and Masson three-color staining (masson three-color) of the pre-and post-mineralized nano-fibers were evaluated by the skull defect model of the rat, and the results showed that after 4 weeks of implantation of the mineralized nano-fibers, in particular in that middle part of the defect part, a new bone formation is seen, and the new bone of the blank group and the unmineralized nano-fiber group is mainly from the edge of the defect part to the center, and the bone defect part of the mineralized fiber group after 12 weeks is completely covered by the newborn bone, The bone defects in the blank and unmineralized nano-fiber groups were still not healed. In the end, in view of the need to solve the water-solubility problem of CMCS nano-fiber as the scaffold of bone tissue engineering, the reactive electrospinning technology is adopted for the first time, and the amino-generating Schiff base of the aldehyde group and the CMCS of the Alginic acid (ADA) is reacted by the reactive electrospinning technology. and the in-situ cross-linking of the ADA to the CMCS fiber is realized at the same time of the electrostatic spinning CMCS nano-fiber. The technology is expected to avoid the disadvantage that the traditional glutaraldehyde cross-linking agent has a large biological toxicity. The influence of the rheological behavior of the mixed solution and the process parameters such as the molecular weight and the voltage of the PEO on the morphology of the nano-fiber is discussed in detail. The results show that the CMCS-ADA-PEO composite nano-fiber with good morphology can be obtained when the molecular weight of PEO is 1 million and the voltage is 25kV. The CMCS-ADA nano-fiber can be effectively removed by the method of soaking in deionized water. The solution of acid-base solution and the neutral solution of PBS confirmed that the composite nano-fiber scaffold had good water-solubility. The results of the cell experiment show that the addition of ADA not only improves the water-solubility of the nano-fiber, but also the CMCS-ADA nano-fiber is more beneficial to the adhesion and proliferation of the cells and the ability to differentiate into the osteoblast than the CMCS-ADA nano-fiber compared with the glutaraldehyde cross-linked CMCS fiber and the simple alginic acid nano-fiber.
【学位授予单位】:华南理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R318.08
【相似文献】
相关期刊论文 前10条
1 邵健,杨宇民;水溶性O-羧甲基壳聚糖的制备[J];南通医学院学报;2000年02期
2 蒋琳兰,张相年;羧甲基壳聚糖的合成研究[J];广东药学院学报;2001年04期
3 项朋志,戴云,张娅;羧甲基壳聚糖对微量铜离子吸附性能研究[J];云南中医中药杂志;2005年05期
4 高献礼,刘安军,王丽霞,王秀丽,高伟佳;壳聚糖和N,O羧甲基壳聚糖抑菌活性的研究[J];中国食品添加剂;2005年01期
5 蔡文娣;初金鑫;韩宝芹;王常红;刘万顺;;羧甲基壳聚糖钙的制备及性质结构分析[J];潍坊医学院学报;2008年02期
6 王孝平;姜皓然;田海燕;玄光善;;壳聚糖与羧甲基壳聚糖对铁离子的络合性能研究[J];化学与生物工程;2009年03期
7 伊智峰;罗勇悦;丁丽;李永振;陈鹰;彭政;;天然橡胶/羧甲基壳聚糖抗菌复合材料的制备与性能研究[J];广东化工;2009年10期
8 肖玉良;段桂运;李福荣;夏成才;游桂荣;韩俊芬;郭丰广;;新型絮凝材料——羧甲基壳聚糖的合成新工艺研究及其性能表征[J];时珍国医国药;2010年05期
9 金黎明;覃仙玲;曹鹏;赵小菁;李春斌;齐小辉;范圣第;;硒化羧甲基壳聚糖的合成及表征[J];化学世界;2012年01期
10 陈伟,林友文,罗红斌,李柱来;羧甲基壳聚糖对钙离子的络合[J];福建医科大学学报;2000年02期
相关会议论文 前10条
1 胡巧玲;陈中科;华常鑫;沈家骢;;交联羧甲基壳聚糖牙科隔离膜的制备与表征[A];第四届全国高聚物分子表征学术讨论会论文集[C];2004年
2 易喻;江威;王鸿;颜剑波;应国清;;羧甲基壳聚糖的制备及吸湿保湿性能研究[A];华东六省一市生物化学与分子生物学会2009年学术交流会论文摘要汇编[C];2009年
3 黄凌;彭静;翟茂林;魏根拴;;羧甲基甲壳素/羧甲基壳聚糖在固态下的辐射效应[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年
4 陈浩凡;潘仕荣;;羧甲基壳聚糖的毒性评价[A];中国生物医学工程学会第六次会员代表大会暨学术会议论文摘要汇编[C];2004年
5 常菁;刘万顺;韩宝芹;刘冰;;羧甲基壳聚糖和羧甲基甲壳素的生物学性质研究和比较[A];第六届中国功能材料及其应用学术会议论文集(5)[C];2007年
6 黄爱宾;刘彩凤;邹阿龙;;钙离子交联硫酸化羧甲基壳聚糖/壳聚糖抗坏血酸盐多孔海绵[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
7 王萍;吕勇;龙柱;;双醛羧甲基壳聚糖的结构表征及应用研究[A];中国造纸学会第十六届学术年会论文集[C];2014年
8 李继珩;;羧甲基壳聚糖及其某些性质研究[A];2006年全国生化与生物技术药物学术年会论文集[C];2006年
9 潘仕荣;陈浩凡;莫家聪;王德娟;;O-羧甲基壳聚糖的生物性能与防止术后粘连研究[A];提高全民科学素质、建设创新型国家——2006中国科协年会论文集[C];2006年
10 于敏娜;魏长平;吕志军;贾坤;;低聚N,O-羧甲基壳聚糖的制备与性能[A];2009中国功能材料科技与产业高层论坛论文集[C];2009年
相关重要报纸文章 前3条
1 杨科;羧甲基壳聚糖希夫碱衍生物获专利[N];中国化工报;2007年
2 中生;中科院海洋研究所创制新农药获国家专利[N];粮油市场报;2009年
3 姚耀;羧甲基壳聚糖季铵盐可作保湿剂[N];中国化工报;2010年
相关博士学位论文 前9条
1 周晓峰;cRGD-羧甲基壳聚糖—软脂酸聚合物胶束的制备及体内外抗肿瘤药效学研究[D];苏州大学;2015年
2 赵秀娟;羧甲基壳聚糖基复合材料的制备及在骨缺损修复应用方面的研究[D];华南理工大学;2016年
3 朱琳;蚕蛹羧甲基壳聚糖的制备与特性及其对大鼠术后肠粘连的预防作用[D];苏州大学;2015年
4 董磊;羧甲基壳聚糖金属盐/壳聚糖包覆氧化亚铜的制备及其海洋防污性能研究[D];中国海洋大学;2007年
5 贺斌;羧甲基壳聚糖对椎间盘突出髓核退变的作用及其机制研究[D];武汉大学;2012年
6 桑青;羧甲基壳聚糖铋盐的制备及应用基础研究[D];中国海洋大学;2004年
7 丁万军;羧甲基壳聚糖对大鼠骨关节炎软骨细胞NF-κB信号通路的影响[D];武汉大学;2011年
8 李海浪;壳聚糖衍生物的制备及其在药物载体中的应用研究[D];中国科学院研究生院(上海应用物理研究所);2014年
9 郭占勇;水溶性壳聚糖衍生物的取代基团及氨基正电性对抑菌活性的影响[D];中国科学院研究生院(海洋研究所);2007年
相关硕士学位论文 前10条
1 王绍鹏;羧甲基壳聚糖银络合及活性研究[D];东北师范大学;2007年
2 卢曦;羧甲基壳聚糖的量子化学研究[D];西安建筑科技大学;2011年
3 孔玉龙;羧甲基壳聚糖膜联合培养人表皮细胞的实验研究[D];山东大学;2015年
4 李珍珠;无瘢痕化医用组织胶的制备及性能研究[D];重庆理工大学;2015年
5 穆肖;整合素α_vβ_3靶向Fe_3O_4/羧甲基壳聚糖纳米磁粒的制备和功能化修饰[D];浙江师范大学;2015年
6 高学丽;啤酒酵母葡聚糖的提取及其对南极磷虾中氟的脱除[D];广东海洋大学;2015年
7 崔玉琴;羧甲基壳聚糖-g-聚丙烯酸pH敏感性水凝胶的制备[D];河北科技大学;2015年
8 刘起群;羧甲基壳聚糖碘仿复合膜剂的制备[D];青岛大学;2015年
9 蔡国伟;壳聚糖缓蚀剂与阴极保护对管线钢的联合作用机制研究[D];中国科学院研究生院(海洋研究所);2015年
10 吕丛仪;新型藻蓝蛋白/羧甲基壳聚糖纳米微球的制备及其对HeLa细胞生长的抑制作用研究[D];青岛大学;2015年
,本文编号:2342962
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2342962.html