基于移动电信数据的个人健康风险预测与评估
[Abstract]:With the development of communication industry and the improvement of people's living standard, mobile telecommunication data more and more reflect people's living conditions. In order to study the inherent relationship between mobile telecommunication data and personal health, this paper tracks and collects mobile telecommunication data, and classifies and extracts the characteristic value of mobile telecommunication data. At the same time, the framework of extreme learning machine is improved to predict the inherent relationship between the application habits and personal health status of mobile telecommunication users, so as to predict and evaluate the health risk of mobile telecommunication customers. This paper is based on the theory of extreme learning machine, and uses the improved algorithm as the core algorithm of this paper. As a powerful classifier, the improved algorithm can predict the health status of customers by adjusting the system parameters and according to the feature vector of mobile telecommunication data. In this paper, from the point of view of machine learning, we propose an improved algorithm based on the framework of extreme learning machine, which is based on the mobile telecommunication data and the characteristics of the data related to the users themselves. The risk of personal health status based on mobile telecommunication data is predicted and evaluated. The research of this paper focuses on feature extraction of mobile telecommunication data, learning and classification of data features at the same time. The main work of this paper is as follows: 1. This paper expounds the basic theory and mathematical principle of machine learning and the theoretical and mathematical principles of three kinds of data mining algorithms, which includes the (ELM) framework of the extreme learning machine used in this paper. The two control algorithms are support vector machine (SVM) algorithm and backpropagation (BP) neural network algorithm. 2. According to the characteristics of mobile telecommunication data and the related indexes of personal health, this paper adopts the method of data collection, processing and data arrangement based on mobile telecommunication data. The characteristics of mobile telecommunication data are correlated with the main indicators of personal health to build a feature model. 3. An improved algorithm based on the framework of extreme learning machine is proposed to deal with mobile telecommunication data and to predict and evaluate personal health risks. The improved algorithm uses hidden node number sub-selection process, randomly selects hidden node vector to train the network, and sets up network parameters and training model by selecting the best number of nodes. At the same time, through the simulation experiments under different test data and multiple complex conditions, the improved algorithm is proved to be accurate and efficient in this kind of scenario, and is compared with the other two kinds of algorithms. It is proved that the improved algorithm is an efficient and accurate data recognition algorithm with low complexity.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R318;TN929.5
【相似文献】
相关期刊论文 前5条
1 ;新美印尼合作发展亚洲移动电信网络[J];特区科技;1994年05期
2 孙睿;蒲勇健;;移动电信低端增量市场中的价格策略互动[J];系统工程;2007年03期
3 余文斌;CDMA——中国移动电信市场的新亮点[J];广东科技;2002年09期
4 安玉兴;;资费模式与移动电信网络寡断竞争探讨——基于LRT模型的分析[J];现代商贸工业;2012年09期
5 ;Windows手机突破GPRS终端瓶颈[J];大众科技;2002年09期
相关会议论文 前1条
1 车力军;;移动电信运营商的业务创新研究[A];通信发展战略与业务管理创新学术研讨会论文集[C];2005年
相关重要报纸文章 前10条
1 王涛;澳门将增发移动电信服务临时牌照[N];通信产业报;2000年
2 记者 成竹;浙江第三季度对移动电信类申诉同比增长一倍多[N];中国工商报;2009年
3 本报记者 叶勇;瑞银:联通将遭移动电信夹击[N];上海证券报;2008年
4 ;德国3G移动许可证拍卖收槌[N];计算机世界;2000年
5 ;移动电信网络管理系统[N];计算机世界;2001年
6 记者 芦瑞;“被收费”“被服务”最恼人[N];河南日报;2010年
7 邵素宏;北京移动电信日启动爱心助残服务计划[N];人民邮电;2008年
8 曾娅;十六家中企入围移动电信榜上有名[N];人民邮电;2004年
9 吴彬 柯铭锟;黄石移动电信合作开新篇[N];人民邮电;2000年
10 广东移动深圳分公司 熊明宝;手机媒体化:钱途无量[N];人民邮电;2008年
相关硕士学位论文 前3条
1 程潇婷;基于移动电信数据的个人健康风险预测与评估[D];北京邮电大学;2017年
2 朱莹;移动电信数据业务价值链评价方法及应用研究[D];东北大学;2008年
3 赵卫华;基于支持向量机的移动电信行业客户流失预测研究[D];昆明理工大学;2006年
,本文编号:2441166
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2441166.html