基于骨微环境设计的纤维支架促骨再生研究
[Abstract]:Oral and maxillofacial bone defect caused by inflammation, congenital malformation and surgical treatment is a common clinical manifestation in the field of stomatology and science, which makes the repair of bone defect an important problem in the field. The present invention has made some progress in the treatment of bone defects by using autologous bone graft, allogenic bone grafting, biological material and distraction osteogenesis technology, but because of secondary injury, poor shaping property, immune rejection reaction and high technical requirement, And the application thereof is limited by the problems of high price and limited osteogenic capacity. With the development of cell biology and biological materials, the artificial bone-treated bone defect constructed by the tissue engineering technology has become the hot spot of the present research. The micro-environment of bone biochemistry is the biological basis of bone tissue engineering, and is the basis for the design of bone tissue engineering scaffold material and the selection of biological activity factors. The understanding and understanding of the micro-environment of bone biochemistry will greatly promote the development of bone tissue engineering. The ideal bone tissue engineering scaffold material should have good bone conductivity and bone-induced activity. The aim of the bone tissue engineering is to realize the reconstruction and regeneration of the micro-environment system of the extracellular matrix and the molecular system of the bone biochemical signal, so as to rapidly realize the regeneration of the bone tissue. The two main components of the extracellular matrix are the collagen and the hydroxyapatite, so the material of the bone tissue engineering scaffold material should contain the two components; and the bone biochemical signal molecules can be reconstructed by selecting the appropriate biological active factor to significantly improve the bone repair efficiency. Based on the above theory, we used the electrostatic spinning method to prepare the polylactic acid-glycolic acid copolymer fiber modified by gelatin and hydroxyapatite. The surface morphology of the stent material was characterized by SEM and AFM. The MC3T3-E1 cells and the bone marrow stromal cells were inoculated into the scaffold table. The adhesion, proliferation and differentiation of osteoblasts were detected by laser confocal microscope, MTT and real-time quantitative PCR. in response to that in-vivo host inversion of the nanofiber by in vivo model It is proved that the modified nano-fiber has good osteoinductive activity and biological safety through the above experiment, so the gelatin/ nano-hydroxyapatite-modified PLGA nano-scaffold can be used as a bone tissue scaffold material for the bone regeneration collar. Domain; Gelatin/ nano-hydroxyapatite can improve bone induction and bone-guided activity of bone tissue engineering scaffold Sex. We also prepared the bionic Gelatin/ HA electrostatic spinning fiber support material, and spun the common components of the osteogenic induction condition culture medium into the Gelatin/ HA by directly spinning the sodium glycerophosphate (beta-glycinol phosphate salt, HCO3-GP) and ascorbic acid (AA) into the Gelatin/ HA. The fiber support material before and after the cross-linking preparation is observed by scanning an electron-fiber mirror; and the bone growth-promoting effect of the drug-loaded nano-fiber body is detected through the establishment of a rat skull polar-volume bone defect model, Students' ability to be tested by MICCRO CT and Histology. The result shows that the drug-loaded nano-fiber can be used as a template to guide the regeneration of bone tissue and induce the rapid induction of bone defect. The biomimetic Gelatin/ HA fiber scaffold of the carrier-GP and AA is an excellent substitute for autogenous bone, which can be used in the clinical application of bone defect. In addition, through the freeze-drying method, the EPO protein in the bone biochemical micro-environment is directly compounded with the Gelatin/ HA fiber support, and the high specific surface area and the porosity of the electrostatic spinning support are used for repairing the large amount of the EPO protein Rat skull defect. A 5 mm rat skull bone defect model was established in vivo and an EPO protein fiber was implanted. Dimensional stent material. Through the MICS and histological evaluation of the MICS The results show that the EPO fiber support material can significantly promote bone repair, and the EPO can stimulate the proliferation of the osteoblast and a large amount of the EPO. The bone matrix is secreted. Therefore, the fiber scaffold material of the Gelastin/ HA carrying the EPO is an excellent bone tissue.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:R318.08
【共引文献】
相关期刊论文 前10条
1 殷丽华;刘琪;余占海;秦子顺;;牙周膜干细胞的生物学特性及其作为种子细胞在牙周组织工程中应用的研究进展[J];吉林大学学报(医学版);2013年02期
2 Bao-Hua Ji;Bo Huo;;Probing the mechanosensitivity in cell adhesion and migration: Experiments and modeling[J];Acta Mechanica Sinica;2013年04期
3 万丽佳;吴星恒;;促红细胞生成素对窒息新生大鼠心肌细胞凋亡及内质网应激相关蛋白的影响[J];中国当代儿科杂志;2013年10期
4 陈俊佶;赵强;;心肌再生——从实质到间质[J];国际心血管病杂志;2013年05期
5 吴贵生;叶志义;;一种壳聚糖/聚丙烯酰胺水凝胶基底材料的研究[J];功能材料;2013年20期
6 J.Chen;K.E·Wright;M.A.Birch;;Nanoscale viscoelastic properties and adhesion of polydimethylsiloxane for tissue engineering[J];Acta Mechanica Sinica;2014年01期
7 Jenna M.Shapiro;Michelle L.Oyen;;Viscoelastic analysis of single-component and composite PEG and alginate hydrogels[J];Acta Mechanica Sinica;2014年01期
8 杨旭;李兰兰;贺建;乔丽英;;植酸改性对AZ31镁合金表面细胞黏附性能的影响[J];重庆大学学报;2013年11期
9 周小艳;崔亚洲;韩金祥;;2011~2012年骨分子生物学研究进展[J];国际骨科学杂志;2013年06期
10 李庆庆;黄江鸿;何美健;赵忠玮;王大平;;Runx2及其在骨组织工程中的应用[J];国际骨科学杂志;2014年01期
相关博士学位论文 前10条
1 田海军;长效局部缓释型BMP-2纳米胶囊在脊柱融合中的应用研究[D];第二军医大学;2011年
2 张艳红;羟基磷灰石/丝素复合支架负载BMP-2的制备及其生物相容性研究[D];浙江大学;2011年
3 陈明;重组人骨形态形成蛋白-2缓释体预防人工关节无菌性松动实验研究[D];苏州大学;2008年
4 郭会芳;新型促骨形成抗骨质疏松药物的合成与活性研究以及戊二酰亚胺抗生素结构改造与抗病毒活性研究[D];中国协和医科大学;2009年
5 甘强;rhBMP9的真核表达,纯化及体外生物骨诱导活性分析[D];重庆医科大学;2012年
6 李丹;PLGA/羟基磷灰石复合支架的制备及其用于骨修复的研究[D];浙江大学;2011年
7 贺轶宇;温度敏感性水凝胶携带HMGB1治疗大鼠心肌梗死的实验研究[D];武汉大学;2013年
8 任娜;生物医用钛基植入体材料表面纳米结构的构建及其生物学性能研究[D];山东大学;2013年
9 赵云鹏;生长因子progranulin在骨修复,皮肤炎症以及椎间盘退变过程中的作用与机制研究[D];山东大学;2013年
10 高毅;淫羊藿苷对成骨细胞增殖分化的影响及机制探讨[D];河北医科大学;2013年
相关硕士学位论文 前10条
1 肖菲;比较盘钻法与冲顶法行上颌窦内提升同期种植体植入效果的实验研究[D];青岛大学;2011年
2 彭志明;HAP/CS可注射水凝胶的制备及性能研究[D];武汉理工大学;2010年
3 万海云;不同粒径β-TCP植骨材料对腔隙性骨缺损骨修复的影响[D];第四军医大学;2010年
4 黄鑫;PLGA/TCP快速成型支架复合rhBMP-2壳聚糖微球修复兔股骨髁部骨缺损的实验研究[D];第四军医大学;2010年
5 冯学涛;血小板裂解液对人脐带间充质干细胞体外成软骨分化的影响[D];青岛大学;2012年
6 王玲菲;两种不同矿化诱导液对根尖乳头干细胞成骨/成牙本质向分化的影响[D];广西医科大学;2012年
7 胡通;骨形态发生蛋白-2对大鼠完全脱位牙延迟再植的影响[D];河北医科大学;2012年
8 王留霞;鼻腔递送IGF-1对HIBD大鼠大脑的作用及FOXG1基因的表达[D];郑州大学;2012年
9 戚娟娟;不同表面种植体软组织袖口临床和组织学的比较研究[D];南方医科大学;2012年
10 张永英;PDGFR-β抑制剂AG-1295通过Erk通路促进MC3T3-E1细胞成骨分化[D];济南大学;2012年
本文编号:2505426
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2505426.html