纤维素纳米晶/氧化锌杂化材料的结构设计及其生物聚酯膜的改性研究
发布时间:2021-03-27 15:55
Biodegradable polyesters are a relevant candidate in the field of biomedical applications such as drug delivery,wound dressings,tissue engineering owing to their suitable properties to support cellular growth and proliferation.However,the applications of biodegradable polyesters in the biomedical are limited due to their low degradation rate,uncontrollable degradation for many clinical applications,poor mechanical and thermal properties.Therefore by understanding the combined effects of inorgani...
【文章来源】:浙江理工大学浙江省
【文章页数】:196 页
【学位级别】:博士
【文章目录】:
Acknowledgements
Abstract
Chapter 1. Introduction
1.1. Introduction
1.2. Biodegradable polymer
1.2.1. Polyhydroxyalkanoates polymers (PHAs)
1.2.2. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)
1.2.3. The properties of PHBV
1.2.4. Applications of PHBV nanocomposites
1.3. Nanocellulose materials
1.3.1. Cellulose nanocrystals (CNCs)
1.3.2. Cellulose nanofibrils (CNFs)
1.3.3. Cellulose nanocrystals as nanofillers based biopolymer nanocomposites and their potential applications
1.3.4. Processing of nanocellulose based nanocomposites
1.4. Cellulose nanocrystals /Zinc oxide composites (CNCs/ZnO)
1.5. Synthesis of nanocellulose/Zinc oxide composite (NCs/ZnO)
1.5.1. Precipitation method
1.5.2. Microwave -assisted hydrothermal method
1.5.3. In situ-casting method
1.5.4. Application of cellulose nanocrystal/ZnO composites
1.6. Outline of the dissertation
1.7. Experimental design of the dissertation
1.8. References
Chapter 2. Green synthesis of sheet-like cellulose nanocrystal-zinc oxide nanohybrids with multifunctional performance through one-step hydrothermal method
2.1. Introduction
2.2. Experimental section
2.2.1. Materials
2.2.2. Synthesis of sheet-like nanohybrids
2.2.3. Characterizations
2.3. Results and discussions
2.3.1. Morphology and microstructures
2.3.2. Crystal structure
2.3.3. Chemical structure and optical properties
2.3.4. Thermal properties
2.3.5. Antimicrobial properties
2.3.6. Photocatalytic activity
2.3.7. The apparent kinetic rate constants and Turnover frequency (TOF)
2.4. Summary
2.5. References
Chapter 3. Sheet-like cellulose nanocrystal-ZnO nanohybrids as multifunctional reinforcing agents in biopolyester composite nanofibers with ultrahigh UV- Shielding and antibacterial performances
3.1. Introduction
3.2. Experimental section
3.2.1. Materials
3.2.2. Synthesis of sheet-like CNC-ZnO nanohybrids
3.2.3. Preparation and fabrication of composite nanofibers
3.2.4. Characterization
3.3. Results and discussions
3.3.1. Surface morphologies and microstructures
3.3.2. Chemical structure
3.3.3. Thermal stability crystallization and melting behaviour
3.3.4. Spherulite Morphology
3.3.5. UV-Shielding Performance
3.3.6. The absorbency of solution A
3.3.7. Antimicrobial properties
3.4. Summary
3.5. References
Chapter 4. In vitro degradation and possible hydrolytic mechanism of PHBV nanocomposites by incorporating cellulose nanocrystal-ZnO nanohybrids
4.1. Introduction
4.2. Experimental section
4.2.1. Materials
4.2.2. Preparation of cellulose nanocrystals/zinc oxide (CNC/ZnO) Nanohybrids
4.2.3. Preparation of the PHBV/CNC-ZnO nanocomposites
4.2.4. Characterization
4.3. Results and discussion
4.3.1. Morphology analysis
4.3.2. Chemical structure and optical properties
4.3.3. Thermal stability
4.3.4. Non-isothermal crystallization and melting behavior
4.3.5. Mechanical and barrier properties
4.3.6. In vitro degradation and water contact angle
4.3.7. Antimicrobial properties
4.3.8. Morphological evolution of PHBV/CNC-ZnO nanocomposites
4.3.9. Chemical structure of PHBV/CNC-ZnO nanocomposites after degradation in PBS solution
4.3.10. Thermal stability of PHBV/CNC-ZnO nanocomposites after degradation in PBS solution
4.4. Summary
4.5. References
Chapter 5. Sun-light and thermo-sensitive responsive of PHBV phase change materials with functionalized Cellulose nanocrystal-ZnO nanohybrids for thermal energy storage and controllable drug release behavior
5.1. Introduction
5.2. Experimental section
5.2.1. Materials
5.2.2. Synthesis of CNC-ZnO
5.2.3. Electrospinning of phase change composite fiber (PCF)
5.2.4. Electrospinning of PCF composite with Tetracycline hydrochloride (TH )
5.2.5. Thermal treatment of the PCF composites
5.2.6. Characterization
5.3. Results and discussion
5.3.1. The morphologies of phase change composite fiber (PCF)
5.3.2. Crystalline properties of PCF composites
5.3.3. Shape –stability of PCF composites
5.3.4. Chemical structures of PCF composite (FT-IR)
5.3.5. Thermal properties and supercooling extents of PCF composites
5.3.6. Thermal stability of PCF composites
5.3.7. Thermal reliability of PCF composites
5.3.8. Photothermal Heat conversion of PCF composite
5.3.9. IR observation
5.3.10. In vitro drug release of drug loaded -PCF composites
5.4. Summary
5.5. References
Chapter 6. Conclusions and future works
6.1. Conclusions
6.2. Recommendations for future research
Appendix
Publications
本文编号:3103780
【文章来源】:浙江理工大学浙江省
【文章页数】:196 页
【学位级别】:博士
【文章目录】:
Acknowledgements
Abstract
Chapter 1. Introduction
1.1. Introduction
1.2. Biodegradable polymer
1.2.1. Polyhydroxyalkanoates polymers (PHAs)
1.2.2. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)
1.2.3. The properties of PHBV
1.2.4. Applications of PHBV nanocomposites
1.3. Nanocellulose materials
1.3.1. Cellulose nanocrystals (CNCs)
1.3.2. Cellulose nanofibrils (CNFs)
1.3.3. Cellulose nanocrystals as nanofillers based biopolymer nanocomposites and their potential applications
1.3.4. Processing of nanocellulose based nanocomposites
1.4. Cellulose nanocrystals /Zinc oxide composites (CNCs/ZnO)
1.5. Synthesis of nanocellulose/Zinc oxide composite (NCs/ZnO)
1.5.1. Precipitation method
1.5.2. Microwave -assisted hydrothermal method
1.5.3. In situ-casting method
1.5.4. Application of cellulose nanocrystal/ZnO composites
1.6. Outline of the dissertation
1.7. Experimental design of the dissertation
1.8. References
Chapter 2. Green synthesis of sheet-like cellulose nanocrystal-zinc oxide nanohybrids with multifunctional performance through one-step hydrothermal method
2.1. Introduction
2.2. Experimental section
2.2.1. Materials
2.2.2. Synthesis of sheet-like nanohybrids
2.2.3. Characterizations
2.3. Results and discussions
2.3.1. Morphology and microstructures
2.3.2. Crystal structure
2.3.3. Chemical structure and optical properties
2.3.4. Thermal properties
2.3.5. Antimicrobial properties
2.3.6. Photocatalytic activity
2.3.7. The apparent kinetic rate constants and Turnover frequency (TOF)
2.4. Summary
2.5. References
Chapter 3. Sheet-like cellulose nanocrystal-ZnO nanohybrids as multifunctional reinforcing agents in biopolyester composite nanofibers with ultrahigh UV- Shielding and antibacterial performances
3.1. Introduction
3.2. Experimental section
3.2.1. Materials
3.2.2. Synthesis of sheet-like CNC-ZnO nanohybrids
3.2.3. Preparation and fabrication of composite nanofibers
3.2.4. Characterization
3.3. Results and discussions
3.3.1. Surface morphologies and microstructures
3.3.2. Chemical structure
3.3.3. Thermal stability crystallization and melting behaviour
3.3.4. Spherulite Morphology
3.3.5. UV-Shielding Performance
3.3.6. The absorbency of solution A
3.3.7. Antimicrobial properties
3.4. Summary
3.5. References
Chapter 4. In vitro degradation and possible hydrolytic mechanism of PHBV nanocomposites by incorporating cellulose nanocrystal-ZnO nanohybrids
4.1. Introduction
4.2. Experimental section
4.2.1. Materials
4.2.2. Preparation of cellulose nanocrystals/zinc oxide (CNC/ZnO) Nanohybrids
4.2.3. Preparation of the PHBV/CNC-ZnO nanocomposites
4.2.4. Characterization
4.3. Results and discussion
4.3.1. Morphology analysis
4.3.2. Chemical structure and optical properties
4.3.3. Thermal stability
4.3.4. Non-isothermal crystallization and melting behavior
4.3.5. Mechanical and barrier properties
4.3.6. In vitro degradation and water contact angle
4.3.7. Antimicrobial properties
4.3.8. Morphological evolution of PHBV/CNC-ZnO nanocomposites
4.3.9. Chemical structure of PHBV/CNC-ZnO nanocomposites after degradation in PBS solution
4.3.10. Thermal stability of PHBV/CNC-ZnO nanocomposites after degradation in PBS solution
4.4. Summary
4.5. References
Chapter 5. Sun-light and thermo-sensitive responsive of PHBV phase change materials with functionalized Cellulose nanocrystal-ZnO nanohybrids for thermal energy storage and controllable drug release behavior
5.1. Introduction
5.2. Experimental section
5.2.1. Materials
5.2.2. Synthesis of CNC-ZnO
5.2.3. Electrospinning of phase change composite fiber (PCF)
5.2.4. Electrospinning of PCF composite with Tetracycline hydrochloride (TH )
5.2.5. Thermal treatment of the PCF composites
5.2.6. Characterization
5.3. Results and discussion
5.3.1. The morphologies of phase change composite fiber (PCF)
5.3.2. Crystalline properties of PCF composites
5.3.3. Shape –stability of PCF composites
5.3.4. Chemical structures of PCF composite (FT-IR)
5.3.5. Thermal properties and supercooling extents of PCF composites
5.3.6. Thermal stability of PCF composites
5.3.7. Thermal reliability of PCF composites
5.3.8. Photothermal Heat conversion of PCF composite
5.3.9. IR observation
5.3.10. In vitro drug release of drug loaded -PCF composites
5.4. Summary
5.5. References
Chapter 6. Conclusions and future works
6.1. Conclusions
6.2. Recommendations for future research
Appendix
Publications
本文编号:3103780
本文链接:https://www.wllwen.com/yixuelunwen/swyx/3103780.html