车辆碰撞行人的动力学响应及胸部和下肢损伤机理研究
发布时间:2021-10-05 03:08
行人是交通事故中死亡风险最高的道路使用者之一,行人保护已成为汽车设计的重要课题之一。行人头部损伤是造成死亡的主要原因,针对行人头部保护进行汽车设计研究的同时,行人胸部损伤数量也在逐年上升。在车辆与行人碰撞事故中,行人胸部的损伤率仅次于头部和下肢,而致死率仅次于头部,对受害者和社会造成了严重的影响。因此针对胸部损伤及防护措施的研究也突显其急迫性。行人下肢的损伤可引发长期的残疾,给社会带来沉重的负担,其损伤及损伤评价方法虽得到广泛的研究并取得了一定进展,但对于不同汽车前部结构碰撞的损伤机理及评价方法仍需改进。因此,探讨行人胸部和下肢损伤机理、损伤防护技术和损伤评价方法对改进汽车结构碰撞安全设计,具有重要的社会现实意义。本文简要介绍了行人交通事故现状,行人损伤生物力学研究现状,总结了行人头部,胸部及下肢的主要解剖学结构及主要损伤形式及损伤机理,简单归纳了行人保护的研究方法。根据车辆与行人事故碰撞中常致人体损伤的车辆类型,建立了不同前部结构的中型轿车(medium car)、微型车(minicar)、厢式车(one-box type vehicle)及运动型轿车(SUV)的有限元模型。其中,中...
【文章来源】:湖南大学湖南省 211工程院校 985工程院校 教育部直属院校
【文章页数】:152 页
【学位级别】:博士
【文章目录】:
Abstract
Content
Abbreviations
Chapter 1 Introduction
1.1 Background
1.2 Epidemiology of a pedestrian accident
1.2.1 Overview of pedestrian accidents
1.2.2 Distribution of pedestrian injuries
1.2.3 Vehicle size and type
1.2.4 Impact speed
1.3 Pedestrian injury biomechanics
1.3.1 Head injury biomechanics
1.3.2 Thorax injury biomechanics
1.3.3 Lower limb injury biomechanics
1.4 Injury assessment techniques
1.4.1 Pedestrian physical dummy test
1.4.2 Mathematical models
1.5 Pedestrian safety countermeasures
1.5.1 Passive safety systems
1.5.2 Active safety systems
1.6 Aim of the present study
Chapter 2 Mathematical Theories and Development of Vehicle Finite Element Models
2.1 Introduction
2.2 Mathematical simulation theory
2.2.1 Multi-body system(MBS)dynamics
2.2.2 Explicit Finite Element Method
2.3 Vehicle FE model development
2.4 Results of the vehicle FE model validation
2.4.1 Validation of the minicar FE model
2.4.2 Validation of the one-box vehicle FE model
2.4.3 Validation of the SUV FE model
2.5 Summary
Chapter 3 Pedestrian Kinematic Behavior and Head Injuries
3.1 Introduction
3.2 Methodology
3.3 Pedestrian kinematic behavior
3.3.1 Globe kinematic behavior
3.3.2 Influence of car's front shape on pedestrian trajectories
3.3.3 Influence of vehicle impact velocity on pedestrian trajectories
3.4 Head impact conditions
3.4.1 Wrap around distance (WAD)
3.4.2 Head impact velocity
3.4.3 Head impact angle
3.5 Influence of vehicle impact speed on head injury risk
3.6 Discussion
3.7 Summary
Chapter 4 Finite Element Analysis of Chest Injury Mechanism and Injury Risk
4.1 Introduction
4.2 Methodology
4.3 Results
4.3.1 Chest impact conditions
4.3.2 Chest deformation mode
4.4 Influence of impact velocity on chest injury risk
4.5 Discussion
4.6 Summary
Chapter 5 Assessment of Chest Injuries Using Subsystem Impact Test
5.1 Introduction
5.2 Chest effective impact mass
5.2.1 Theory and method
5.2.2 Chest effective mass from MBS simulations
5.2.3 Chest effective mass from FE simulations
5.2.4 Chest effective mass
5.3 Upper legform impact test and force deformation characteristics
5.3.1 Upper legform certification test
5.3.2 Upper legform impact simulations and test
5.3.3 Force deformation characteristics
5.4 Headform impact test and force deformation characteristics
5.4.1 Set-up of the simulation
5.4.2 The result of the headform impact test
5.4.3 Force deformation characteristics
5.4.4 The headform acceleration and rib deflection
5.5 Comparsion of the upper legform and headform impactors
5.6 Discussion
5.7 Summary
Chapter 6 Finite Element Analysis of Lower Extremity Injuries during Vehicle Impact
6.1 Introduction
6.2 Methodology
6.3 Bending moment diagram of lower extremity
6.3.1 Medium car-to-pedestrian collision
6.3.2 Minicar-to-pedestrian collision
6.3.3 one-box type vehicle-to-pedestrian collision
6.3.4 SUV-to-pedestrian collision
6.4 Pelvis loadings
6.5 Influence of vehicle velocity on injury risk of lower extremity
6.6 Influence of vehicle velocity on injury risk for pelvis
6.7 Discussion
6.8 Summary
Chapter 7 General Discussion and Conclusions
7.1 General Discussion
7.2 Conclusions
Reference
Acknowledgements
Publications
附件一: 摘要(中文)
附件二: 本文主要研究内容与创新点概要(中文)
本文编号:3418881
【文章来源】:湖南大学湖南省 211工程院校 985工程院校 教育部直属院校
【文章页数】:152 页
【学位级别】:博士
【文章目录】:
Abstract
Content
Abbreviations
Chapter 1 Introduction
1.1 Background
1.2 Epidemiology of a pedestrian accident
1.2.1 Overview of pedestrian accidents
1.2.2 Distribution of pedestrian injuries
1.2.3 Vehicle size and type
1.2.4 Impact speed
1.3 Pedestrian injury biomechanics
1.3.1 Head injury biomechanics
1.3.2 Thorax injury biomechanics
1.3.3 Lower limb injury biomechanics
1.4 Injury assessment techniques
1.4.1 Pedestrian physical dummy test
1.4.2 Mathematical models
1.5 Pedestrian safety countermeasures
1.5.1 Passive safety systems
1.5.2 Active safety systems
1.6 Aim of the present study
Chapter 2 Mathematical Theories and Development of Vehicle Finite Element Models
2.1 Introduction
2.2 Mathematical simulation theory
2.2.1 Multi-body system(MBS)dynamics
2.2.2 Explicit Finite Element Method
2.3 Vehicle FE model development
2.4 Results of the vehicle FE model validation
2.4.1 Validation of the minicar FE model
2.4.2 Validation of the one-box vehicle FE model
2.4.3 Validation of the SUV FE model
2.5 Summary
Chapter 3 Pedestrian Kinematic Behavior and Head Injuries
3.1 Introduction
3.2 Methodology
3.3 Pedestrian kinematic behavior
3.3.1 Globe kinematic behavior
3.3.2 Influence of car's front shape on pedestrian trajectories
3.3.3 Influence of vehicle impact velocity on pedestrian trajectories
3.4 Head impact conditions
3.4.1 Wrap around distance (WAD)
3.4.2 Head impact velocity
3.4.3 Head impact angle
3.5 Influence of vehicle impact speed on head injury risk
3.6 Discussion
3.7 Summary
Chapter 4 Finite Element Analysis of Chest Injury Mechanism and Injury Risk
4.1 Introduction
4.2 Methodology
4.3 Results
4.3.1 Chest impact conditions
4.3.2 Chest deformation mode
4.4 Influence of impact velocity on chest injury risk
4.5 Discussion
4.6 Summary
Chapter 5 Assessment of Chest Injuries Using Subsystem Impact Test
5.1 Introduction
5.2 Chest effective impact mass
5.2.1 Theory and method
5.2.2 Chest effective mass from MBS simulations
5.2.3 Chest effective mass from FE simulations
5.2.4 Chest effective mass
5.3 Upper legform impact test and force deformation characteristics
5.3.1 Upper legform certification test
5.3.2 Upper legform impact simulations and test
5.3.3 Force deformation characteristics
5.4 Headform impact test and force deformation characteristics
5.4.1 Set-up of the simulation
5.4.2 The result of the headform impact test
5.4.3 Force deformation characteristics
5.4.4 The headform acceleration and rib deflection
5.5 Comparsion of the upper legform and headform impactors
5.6 Discussion
5.7 Summary
Chapter 6 Finite Element Analysis of Lower Extremity Injuries during Vehicle Impact
6.1 Introduction
6.2 Methodology
6.3 Bending moment diagram of lower extremity
6.3.1 Medium car-to-pedestrian collision
6.3.2 Minicar-to-pedestrian collision
6.3.3 one-box type vehicle-to-pedestrian collision
6.3.4 SUV-to-pedestrian collision
6.4 Pelvis loadings
6.5 Influence of vehicle velocity on injury risk of lower extremity
6.6 Influence of vehicle velocity on injury risk for pelvis
6.7 Discussion
6.8 Summary
Chapter 7 General Discussion and Conclusions
7.1 General Discussion
7.2 Conclusions
Reference
Acknowledgements
Publications
附件一: 摘要(中文)
附件二: 本文主要研究内容与创新点概要(中文)
本文编号:3418881
本文链接:https://www.wllwen.com/yixuelunwen/swyx/3418881.html