当前位置:主页 > 医学论文 > 五官科论文 >

非综合征型视网膜色素变性家系PRPF31基因突变的筛查及功能鉴定

发布时间:2018-05-01 12:08

  本文选题:视网膜色素变性 + PRPF31 ; 参考:《郑州大学》2017年硕士论文


【摘要】:研究背景和目的视网膜色素变性(Rentinitis pigmentosa,RP,OMIM:268000)是光感受器细胞(包括视杆细胞和视锥细胞)异常而导致的遗传性视网膜疾病。RP在世界范围内的发病率约为1/5000-1/3500;在我国,RP的发病率也在逐年上升,约为l/l000,是引起失明的重要原因之一。根据是否同时伴随其他眼部症状,RP可以分为综合征型视网膜色素变性(Syndromic retinitis pigmentosa)和非综合征型视网膜色素变性(Nonsyndromic retinitis pigmentosa,NSRP),其中NSRP约占RP的65%。RP的发病机制异常复杂,涉及多种不同的生物代谢途径。其致病基因所编码的蛋白主要参与光传导、感光细胞结构的维持以及m RNA剪接等过程。不同生物途径中各种蛋白的编码基因突变而使蛋白功能受损,都可能导致光感受器细胞的异常,引起RP的发生。2012年,许菲等在一个常染色体显性遗传RP家系的研究中发现PRPF31基因的7号外显子上有一个c.544_618del75bp的新发突变。但是,许菲等的研究选取的家系并不完整,只是该家族大家系中的一小部分;另外由于RP具有极强的临床和遗传异质性,可能存在新的尚未发现的致病突变位点;并且许菲等的研究没有对该c.544_618del75bp缺失突变具体机制和功能进行深入探索。因此,我们对该家系进行补充和完善,对许菲的研究结果在整个大家系中进行验证,同时寻找新的致病突变,进一步阐明基因型和表型的关系,并对c.544_618del75bp缺失突变的功能进行初步研究,为RP的分子遗传机制及临床诊断和治疗提供理论依据。研究对象对许菲等研究的RP家系进行补充和完善,并对该家系成员进行了详细的病史采集和眼科检查,对家系内患者进行了确诊。详细了解该家系成员的信息后绘制家系系谱。抽取该家系成员外周静脉血5mL。此外,随机选取100名健康个体作为正常对照,抽取外周血5mL。本研究通过了郑州大学伦理委员会的审批,所有受试者均知情同意。研究方法1.本研究采用全血基因组提取试剂盒提取了外周血基因组DNA,对该RP家系成员提取了RNA,并反转录成cDNA。2.对该家系中全部成员和100名健康对照通过sanger测序进行PRPF31基因c.544_618del75bp突变位点的测序筛查验证,鉴定该基因型与表型在家系中的共分离。并且对家系内患者的基因组cDNA进行c.544_618del75bp突变位点的sanger测序验证。3.对该突变位点进行生物信息学功能分析,并通过SWISS MODEL软件预测野生型和突变型PRPF31基因编码蛋白的三维结构。4.采用实时荧光定量RT-PCR技术检测该家系中患者和正常人的外周血中PRPF31基因mRNA的表达水平。构建携带野生型和突变型PRPF31基因的过表达载体并采用质粒提取试剂盒进行提取和纯化,其后转染293T细胞,通过Western blot检测野生型和突变型基因编码蛋白在293T细胞内是否有表达。运用RT-PCR技术在转染野生型和突变型过表达载体的293T细胞中检测PRPF31基因mRNA的表达水平,验证突变对PRPF31基因功能的影响。5.通过查阅文献及The Human Protein Atlas数据库筛选和mRNA剪切相关并且在人类外周血中有表达的RP9、ROM1、SNRNP200和TOPORS等基因。运用实时荧光定量RT-PCR技术在该家系患者和正常人的外周血中检测这些基因mRNA的表达水平,并在转染野生型和突变型过表达载体的293T细胞中验证这些基因的表达情况。6.采用SPSS21.0统计软件进行数据分析。家系内患者与健康对照之间mRNA的表达水平采用独立样本t检验进行统计分析,所有定量资料用均数±标准差(mean±SD)表示,运用Bivariate相关性分析,对家系内所有成员中PRPF31基因的mRNA表达水平与其相关基因的mRNA表达水平分别进行相关性分析。P0.05具有统计学意义。结果1.该家系内大部分患者都在10岁前发病,均以夜盲为首发症状,伴有视力有下降、视野缺损等症状,眼底检查表明视盘颜色相对正常,但有不同程度的视网膜色素细胞萎缩。2.经过sanger测序发现所有患者的DNA和cDNA中都携带有PRPF31基因c.544_618del75bp突变。除1例外显不全成员外,家系内正常人和100例健康对照中则没有检测到该突变。本研究结果与许菲等人的研究结果一致。此外,我们在PRPF31基因上发现了一个IVS6-78_IVS6-75del4CACA的缺失突变,但所有患者中均未发现该突变。这两个缺失突变同时存在于家系中的1例外显不全的成员中,并且位于不同的染色体上。家系内正常人中IVS6-78_IVS6-75del4CACA缺失突变发生率为31.4%,且都为杂合突变。100例健康对照有38%的人有IVS6-78_IVS6-75del4CACA突变并且均为杂合突变,其等位基因的频率为21.5%。3.利用SWISS MODEL对c.544_618del75bp突变型PRPF31基因所编码的蛋白进行三维结构的预测,结果提示蛋白的结构发生了比较明显的缺失改变。利用Mutation Taster在线软件对PRPF31基因上的c.544_618del75bp突变位点和IVS6-78_IVS6-75del4CACA突变位点进行功能预测,结果显示c.544_618del75bp缺失是一种致病突变,能够造成氨基酸序列的改变和剪切位点的改变,进而可能造成蛋白质结构的改变。而IVS6-78_IVS6-75del4CACA位点能够使剪切位点发生改变,可能改变蛋白质的结构。4.通过实时荧光定量RT-PCR技术在家系内16例患者与26例正常对照之间对PRPF31基因mRNA表达水平进行比较,发现患者外周血中PRPF31基因的mRNA表达水平(0.65±0.40)显著低于正常对照(1.35±1.15),差异有统计学意义(P0.05)。构建携带野生型和突变型PRPF31基因的过表达载体并转染293T细胞后,Western blot检测到突变型和野生型PRPF31的过表达载体在293T细胞内能够正常表达,采用实时荧光定量RT-PCR检测PRPF31基因的mRNA表达水平,发现野生型和突变型PRPF31基因转染组PRPF31基因mRNA表达水平显著高于阴性对照组(P0.001),且野生型PRPF31基因的mRNA表达水平显著高于突变型(P0.001)。5.采用实时荧光定量RT-PCR在家系内16例患者与26例正常对照之间检测RP9、ROM1、SNRNP200和TOPORS等基因的mRNA的表达水平,发现患者外周血中RP9和ROM1基因mRNA的表达水平(分别是0.52±0.34和0.79±0.67)显著低于正常对照(分别是1.50±1.13和1.74±1.72),差异有统计学意义(P0.05)。运用Bivariate相关性分析,对家系内39例成员(16例患者与26例正常对照者)的PRPF31基因的mRNA表达水平与RP9、ROM1基因的mRNA表达水平分别进行相关性分析,结果显示:PRPF31基因与RP9基因的mRNA表达水平呈显著的正相关(r=0.71,P=0.000)。在转染后的293T细胞中对RP9、ROM1、SNRNP200和TOPORS基因的表达水平进行体外验证,发现突变型PRPF31转染组中RP9的表达水平低于野生型转染组,但是差异没有统计学意义。结论1.PRPF31基因的杂合突变c.544_618del75bp可能是该视网膜色素变性家系的致病突变,而IVS6-78_IVS6-75del4CACA缺失突变可能是一个多态位点。2.PRPF31基因c.544_618del75bp致病突变能够降低该基因的mRNA表达水平,这可能是PRPF31基因c.544_618del75bp突变导致RP发生的重要机制。3.PRPF31基因c.544_618del75bp突变能够使ADRP相关基因RP9的表达水平显著降低,表明PRPF31基因的c.544_618del75bp突变可能通过影响RP9的正常功能导致RP的发生。
[Abstract]:Background and objective retinal pigment degeneration (Rentinitis pigmentosa, RP, OMIM:268000) is an abnormal genetic retinal disease caused by the abnormalities of photoreceptor cells (including rod cells and cone cells) and the incidence of.RP in the world is about 1/5000-1/3500; in China, the incidence of RP is also rising year by year, about l/l000, which is a cause of loss. One of the important reasons of Ming is that RP can be divided into Syndromic retinitis pigmentosa (retinitis pigmentosa) and non syndrome type retinal pigment degeneration (Nonsyndromic retinitis pigmentosa, NSRP) according to whether it is accompanied by other ocular symptoms at the same time. The same biological metabolic pathway. The protein encoded by its pathogenic gene mainly participates in the process of light conduction, the maintenance of photosensitive cell structure and the splicing of M RNA. The mutation of the encoding genes of various proteins in different biological pathways may cause the damage of the protein function, which may cause the abnormal of the photoreceptor cells, cause the occurrence of RP in.2012 years, and so on. In the study of an autosomal dominant hereditary RP family, a new mutation of c.544_618del75bp was found in exon 7 of the PRPF31 gene. However, the studies selected by xanphi were not complete, only a small part of the family family. In addition, because of the strong clinical and genetic heterogeneity of RP, there may be new yet new ones. The findings of the found mutation site, and the study of Xu Fei, did not explore the specific mechanism and function of the c.544_618del75bp deletion mutation. Therefore, we supplemented and perfected the family. The results of the study were verified in the whole family, and a new pathogenic mutation was found, and the genotypes and tables were further clarified. The function of c.544_618del75bp deletion mutation was preliminarily studied in order to provide a theoretical basis for the molecular genetic mechanism and clinical diagnosis and treatment of RP. The research subjects supplemented and perfected the RP families of the study of Xu Fei, and carried out a detailed history collection and ophthalmology examination for the family members of the family. The family members of the family were given a detailed understanding of the family genealogy. In addition to the peripheral venous blood 5mL. of the family members, 100 healthy individuals were selected as normal controls, and the 5mL. of the peripheral blood was selected for examination and approval of the Zhengzhou University ethics committee. All the subjects were informed consent. The study method was adopted in 1. studies. The whole blood genome Extraction Kit extracted genomic DNA from peripheral blood, extracted RNA from the members of the RP family, and reverse transcriptional cDNA.2. to all members of the family and 100 healthy controls by sequencing the c.544_618del75bp mutation site of the PRPF31 gene by Sanger sequencing to identify the genotype and phenotype in the family. And the Sanger sequencing of the c.544_618del75bp mutation site of the genome cDNA in the family of families verifies that.3. has a bioinformatics function analysis on the mutation site, and the SWISS MODEL software is used to predict the three dimensional structure of the wild and mutant PRPF31 gene encoding proteins by the real-time fluorescent quantitative RT-PCR technology for the detection of the family. The expression level of PRPF31 gene mRNA in the peripheral blood of the patients and normal people. The overexpression vector carrying the wild type and the mutant PRPF31 gene was constructed and the Plasmid Extraction Kit was used to extract and purify it. Then the 293T cells were transfected, and the Western blot was used to detect whether the wild type and mutant gene encoded proteins were in 293T cells. The expression level of PRPF31 gene mRNA was detected by RT-PCR technique in 293T cells transfected with wild type and mutant overexpressed vector, and the effect of mutation on the function of PRPF31 gene was verified by screening the literature and The Human Protein Atlas database screening and mRNA shear correlation and expressed in human peripheral blood. P200 and TOPORS genes. The expression of these genes was detected in the peripheral blood of the family and normal people by real time fluorescence quantitative RT-PCR, and the expression of these genes was verified in the 293T cells transfected with wild type and mutant overexpressed vector..6. was used for data analysis by SPSS21.0 statistics software. The expression level of mRNA was statistically analyzed by independent sample t test, and all quantitative data were expressed with mean mean + standard deviation (mean + SD), and Bivariate correlation analysis was used to analyze the mRNA expression level of PRPF31 gene in all members of the family and the mRNA expression level of related genes respectively. 05 the results were statistically significant. 1. most of the patients in the family were onset before the age of 10, with night blindness as the first symptom, accompanied by visual loss, visual field defect and other symptoms. Fundus examination showed that the color of the optic disc was relatively normal, but a different degree of retinal pigment cell atrophy.2. was found in all patients' DNA and cDNA through Sanger sequencing. The PRPF31 gene c.544_618del75bp mutation was carried. The mutation was not detected in normal people in the family and in 100 healthy controls except for 1 exceptions. The results of this study were in accordance with the results of Xu Fei et al. In addition, we found a IVS6-78_IVS6-75del4CACA deletion mutation in the PRPF31 gene, but all the patients were found to have a deletion mutation. The two deletion mutations were found in 1 exceptions in the family and on different chromosomes. The incidence of IVS6-78_IVS6-75del4CACA deletion mutations in normal families was 31.4%, and all of the.100 cases with heterozygous mutations had a IVS6-78_IVS6-75del4CACA mutation in 38% of the healthy controls. A heterozygous mutation, the frequency of its allele is 21.5%.3. using SWISS MODEL to predict the three-dimensional structure of the protein encoded by the c.544_618del75bp mutant PRPF31 gene. The results suggest that the structure of the protein has a distinct deletion change. Mutation Taster online software is used for the c.544_618del75bp process on PRPF31 gene. The functional prediction of variable sites and IVS6-78_IVS6-75del4CACA mutation sites shows that c.544_618del75bp deletion is a kind of pathogenic mutation, which can cause changes in the amino acid sequence and the shear site, and may cause the change of protein structure. The IVS6-78_IVS6-75del4CACA site can change the shear site and may be possible to change the shear site. The structure of protein.4. was compared with the mRNA expression level of the PRPF31 gene between 16 patients in the family and 26 normal controls by real-time fluorescence quantitative RT-PCR. It was found that the mRNA expression level of the PRPF31 gene in the peripheral blood of the patients was significantly lower than that of the normal control (1.35 + 1.15), and the difference was statistically significant (P0.05). After carrying the overexpressed vector of the wild type and mutant PRPF31 gene and transfecting 293T cells, Western blot detected that the overexpressed vector of mutant and wild type PRPF31 could be expressed normally in 293T cells. The mRNA expression level of PRPF31 gene was detected by real-time quantitative RT-PCR, and PR and mutant PRPF31 gene transfection group PR was found. The expression level of mRNA in the PF31 gene was significantly higher than that in the negative control group (P0.001), and the mRNA expression level of the wild type PRPF31 gene was significantly higher than that of the mutant type (P0.001).5. using real-time fluorescent quantitative RT-PCR in 16 patients in the family and 26 normal controls to detect the expression level of RP9, ROM1, SNRNP200, and TOPORS. The expression level of RP9 and ROM1 gene mRNA in blood (0.52 + 0.34 and 0.79 + 0.67 respectively) was significantly lower than that of normal controls (1.50 + 1.13 and 1.74 + 1.72 respectively). The difference was statistically significant (P0.05). The mRNA expression level of the PRPF31 gene in 39 members of the family (16 patients and 26 normal controls) by Bivariate correlation analysis and RP9, RO The correlation analysis of the mRNA expression level of the M1 gene showed that the mRNA expression level of the PRPF31 gene was positively correlated with the mRNA expression level of the RP9 gene (r=0.71, P=0.000). The expression level of RP9, ROM1, SNRNP200 and TOPORS genes in the transfected 293T cells was verified in vitro, and the expression level of the mutant transfection group was found. It is lower than the wild type transfection group, but the difference is not statistically significant. Conclusion the heterozygous mutation c.544_618del75bp of the 1.PRPF31 gene may be a pathogenic mutation of the retina pigmented family, and the IVS6-78_IVS6-75del4CACA deletion mutation may be a polymorphic locus of the.2.PRPF31 gene c.544_618del75bp pathogenic mutation to reduce the mR of the gene. The expression level of NA, which may be an important mechanism of the mutation of the PRPF31 gene c.544_618del75bp, causes the.3.PRPF31 gene c.544_618del75bp mutation to significantly reduce the expression level of the ADRP related gene RP9, indicating that the c.544_618del75bp mutation of the PRPF31 gene may lead to the occurrence of RP by affecting the normal function of RP9.

【学位授予单位】:郑州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R774.13

【相似文献】

相关期刊论文 前10条

1 宋剑涛,赵昱国,蒋伯铃,白文;扇形视网膜色素变性1例[J];中国中医眼科杂志;2003年03期

2 田虹,付四清,李劲,张虹,扬真荣;视网膜色素变性一家系33例[J];中华医学遗传学杂志;2003年04期

3 尚玉堂,耿美香,翟军印,王桂芳,徐春光;视网膜色素变性一家系六例[J];中华医学遗传学杂志;2004年03期

4 马素红;郑燕林;王明芳;左玉霞;;视网膜色素变性1家系[J];中国中医眼科杂志;2006年01期

5 张耀武;袁颖;郭春雷;;视网膜色素变性一家系[J];中国实用眼科杂志;2006年11期

6 夏小平;;西医和中医在视网膜色素变性病因和治疗认识上的殊途同归[J];医学与哲学(临床决策论坛版);2008年07期

7 王萍;郑新青;;逆性进行性视网膜色素变性1例[J];临床眼科杂志;2009年02期

8 刘德成;李忠全;;视网膜色素变性的中医治疗观察[J];中国当代医药;2009年17期

9 张英瑜;高朋芬;杨丽霞;;脑源性神经营养因子与视网膜色素变性[J];国际眼科杂志;2010年07期

10 唐香成;夏小平;;近十年中文视网膜色素变性治疗论文的循证评价[J];中国中医眼科杂志;2011年01期

相关会议论文 前10条

1 张红;庄曾渊;;色素变性方治疗特殊类型视网膜色素变性的治疗体会[A];全国第九次中医、中西医结合眼科学术年会论文汇编[C];2010年

2 谭涵宇;王芬;彭清华;李海中;;中西医治疗视网膜色素变性研究进展[A];第十届全国中西医结合眼科学术会议暨第五届海峡眼科学术交流会论文汇编[C];2011年

3 夏小平;田东华;宋国祥;唐香成;;中西药治疗视网膜色素变性临床研究[A];中华中医药学会第七次眼科学术交流会论文汇编[C];2008年

4 谢汉兴;彭清冬;;中医药对视网膜色素变性的治疗观察及其对眼电生理的影响[A];全国首届中青年中医眼科学术研讨会资料汇编[C];1996年

5 罗萍;彭清华;廖泉清;;无色素型视网膜色素变性17例临床分析[A];全国首届中青年中医眼科学术研讨会资料汇编[C];1996年

6 庞荣;;中医治疗视网膜色素变性疗效观察[A];全国第九次中医、中西医结合眼科学术年会论文汇编[C];2010年

7 彭抿;彭清华;李建超;彭波;;视网膜色素变性的中医药文献研究[A];全国第九次中医、中西医结合眼科学术年会论文汇编[C];2010年

8 刘旭阳;郭力恒;魏红;王云;闫乃红;杨巧娜;周晓敏;蔡素萍;;非典型视网膜色素变性家系的分子遗传学分析[A];第十届全国中西医结合眼科学术会议暨第五届海峡眼科学术交流会论文汇编[C];2011年

9 唐仕波;罗燕;孟晶;胡洁;朱晓波;邱观婷;张淳;丁小燕;;视网膜色素变性能治疗吗?[A];中国神经科学学会第六届学术会议暨学会成立十周年庆祝大会论文摘要汇编[C];2005年

10 马迪;黄楚开;张铭志;;无色素性视网膜色素变性的临床报告[A];中华医学会第十二届全国眼科学术大会论文汇编[C];2007年

相关重要报纸文章 前10条

1 卫红;视网膜色素变性研究获突破[N];中国消费者报;2001年

2 云祥;治疗视网膜色素变性有新法[N];中国中医药报;2000年

3 记者 陆健 通讯员 高孟;视网膜色素变性研究获新进展[N];光明日报;2014年

4 湖南中医学院附一院 张健;何谓视网膜色素变性[N];大众卫生报;2002年

5 根据眼科专家石浔接听热线整理;视网膜色素变性有没好的治疗办法[N];家庭医生报;2005年

6 本报特约通讯员 刘坚;视网膜色素变性的针灸治疗[N];上海中医药报;2004年

7 本报记者 张子平;视网膜色素变性应终身服药[N];大众卫生报;2001年

8 蒋月荣;免费为患者检测致病基因突变[N];科技日报;2005年

9 日闻;绿藻基因成功治疗失明鼠[N];医药经济报;2008年

10 刘燕玲;手术逆转眼底病[N];健康报;2007年

相关博士学位论文 前10条

1 蹇骞;大鼠视网膜色素变性Müller细胞逆分化和转分化的分子机制研究[D];第三军医大学;2015年

2 刘媛;视网膜色素变性的遗传背景及分子机制的研究[D];南京医科大学;2015年

3 唐朝晖;两个视网膜色素变性家系的分子遗传学研究[D];华中科技大学;2009年

4 袁松涛;睫状神经营养因子对视网膜色素变性小鼠的治疗作用及其真核表达[D];天津医科大学;2006年

5 陆莎莎;两个中国视网膜色素变性家系的基因连锁定位和候选基因的序列分析[D];天津医科大学;2005年

6 霍冬梅;大鼠骨髓间充质干细胞在视网膜色素变性大鼠体内分化的实验研究[D];中国协和医科大学;2006年

7 贾爰;视网膜色素变性合并肢端病变一家系致病基因筛查[D];北京协和医学院;2009年

8 刘晓文;视网膜色素变性/Usher综合征家系的分子遗传学研究[D];华中科技大学;2010年

9 韩菲;常染色体隐性遗传与散发型视网膜色素变性基因筛查与临床表型分析[D];北京协和医学院;2012年

10 王瑞玲;夜明颗粒对视网膜色素变性感光细胞的影响及机理研究[D];南京中医药大学;2007年

相关硕士学位论文 前10条

1 王段;四物五子汤加减联合复方樟柳碱治疗视网膜色素变性的临床疗效观察[D];福建中医药大学;2015年

2 胡建龙;基于复杂网络的人类视网膜色素变性的位点基因型相互作用网络构建及相关性分析[D];青岛大学;2015年

3 闫晨曦;基因治疗人类CRB1突变引起的视网膜色素变性的方案探索[D];浙江大学;2016年

4 朱亚飞;枸杞多糖对N-甲基-N亚硝脲致大鼠视网膜色素变性的保护作用研究[D];宁夏医科大学;2016年

5 姚璐;自发性遗传性视网膜色素变性/耳聋小鼠的表型及其致病基因的研究[D];第四军医大学;2016年

6 吴晓飞;三个中国视网膜色素变性家系临床及分子遗传学研究[D];天津医科大学;2016年

7 余方青;应用高通量测序技术进行遗传性视网膜色素变性基因诊断的临床研究[D];昆明理工大学;2017年

8 陈大颖;中西医结合针药并用法治疗视网膜色素变性的临床研究[D];黑龙江中医药大学;2009年

9 刘伟;显性视网膜色素变性致病基因的筛查[D];重庆医科大学;2009年

10 董玉萍;四种基因多态性与视网膜色素变性的关联性研究[D];吉林大学;2014年



本文编号:1829278

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/wuguanyixuelunwen/1829278.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户402d1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com