活化肝星状细胞促进大鼠肝细胞去分化为肝前体细胞
本文选题:肝前体细胞(HPC) + 肝星状细胞(HSC) ; 参考:《第二军医大学》2014年硕士论文
【摘要】:【研究背景及目的】 肝前体细胞(Hepatic progenitor cell, HPC)是损伤肝脏中出现的一种具有双向分化潜能的细胞,可向肝细胞和胆管上皮细胞分化参与肝再生。在慢性肝病状态下,HPC可被激活参与肝损伤修复,而且HPC的数量与疾病的严重程度及肝癌发生的风险指数相关。HPC既表达胆管上皮细胞标志物(OV-6、PCK和Sox9等)和成熟肝细胞标志物(白蛋白等),同时也表达肝母细胞标志物(AFP和Dlk1等)。目前,HPC来源尚不明确,传统观点认为HPC来自Hering管,也有研究显示肝细胞、肝星状细胞(Hepaticstellate cell, HSC)及骨髓干细胞在肝损伤环境下可转化为HPC。因此,有学者认为HPC可能是一种来源不同的异质细胞群。 HSC位于Disse间隙,与肝细胞和肝窦内皮细胞直接接触。正常情况下,HSC处于静止状态,肝损伤时,HSC可激活,产生细胞外基质(Extracellular matrix, ECM),并分泌大量的细胞因子和生长因子。HSC的激活是肝纤维化发生发展的中心环节。近年来不断有证据提示HSC还具有促进肝组织再生的作用,同时也有研究表明HPC可来源于HSC。这些研究均表明HSC在肝脏再生过程中扮演着重要角色。 基于以上背景,本课题旨在通过肝损伤动物模型明确活化HSC对HPC产生的影响,并利用体外共培养实验进一步明确HPC的细胞来源。 【实验方法】 一、探讨HSC活化与HPC产生的关系 1、收集人急性肝炎、肝纤维化、肝硬化组织标本,免疫荧光检测HPC标志物PCK及活化HSC标志物α-SMA表达情况。 2、构建2-乙酰氨基芴(2-acetylaminofluorene,2-AAF)/肝大部切除术(Partialhepatectomy, PH)动物模型诱导HPC活化。予2-AAF以10mg/kg体重的剂量对Sprague-Dawley(SD)大鼠进行灌胃,每天1次,持续5天,于第6天行肝大部切除术,手术当日停止灌胃2-AAF,术后第2天继续予2-AAF灌胃,并持续1周。分别取肝大部切除术后0天、4天、6天、9天的大鼠肝脏组织,免疫荧光检测PCK及α-SMA表达情况。 3、构建对乙酰氨基酚(N-acetyl-paraaminophen, APAP)肝损伤模型。按照300mg/kg体重的剂量对SD大鼠腹腔注射APAP,仅注射1次,注射24小时后处死大鼠,取新鲜肝脏组织,免疫荧光检测PCK及α-SMA表达情况。 二、明确活化HSC对HPC产生的影响 (一)鉴定氯化钆(Gadolinium chloride, GdCl3)和胶霉毒素(Gliotoxin)对Kupffer细胞和活化HSC的作用 1、以2ml/kg体重的剂量对SD大鼠腹腔注射20%四氯化碳(Carbon tetrachloride,CCl4),隔日注射1次,共注射2次,末次注射后48小时,予GdCl3以10mg/kg体重的剂量尾静脉注射1次。注射GdCl324小时后取大鼠肝脏组织。免疫荧光检测Kuppfer细胞标志物CD68和活化HSC标志物α-SMA的表达情况。 2、对SD大鼠腹腔注射CCl4,隔日注射1次,共注射2次,在末次注射后48小时,予Gliotoxin以3mg/kg体重的剂量腹腔注射1次。注射Gliotoxin24小时后处死大鼠,取肝脏组织。免疫荧光检测CD68和α-SMA的表达情况。 (二)观察抑制HSC活化对HPC产生的影响 1、分离SD大鼠原代HSC,在体外予DMEM培液培养。收集体外培养后第3天(静息)和第12天(活化)的HSC培养上清。 2、在2-AAF/PH模型肝大部切除术或APAP模型APAP注射前1天,予模型大鼠尾静脉注射GdCl3抑制Kupffer细胞活性及HSC活化。分别于肝大部切除术或APAP注射72小时后处死大鼠,取肝脏组织,免疫荧光检测PCK及α-SMA表达情况,对比观察抑制HSC活化对HPC产生的影响。 3、在以上模型注射GdCl3抑制HSC活化后,于肝大部切除术或APAP注射的次日,腹腔注射不同活化状态的原代HSC培养上清4ml1次。48小时后取大鼠肝脏组织,免疫荧光检测PCK及α-SMA表达变化情况,对比观察补充HSC培养上清对HPC产生的影响。 (三)观察清除活化HSC对HPC产生的影响 1、在2-AAF/PH模型中,在灌胃2-AAF的第1、3天,同时以2ml/kg体重的剂量对SD大鼠腹腔注射20%CCl4以刺激HSC活化,并于肝大部切除术前1天,按3mg/kg体重的剂量对大鼠腹腔注射Gliotoxin清除活化HSC,于肝大部切除术后3天取大鼠肝脏组织,免疫荧光检测PCK及α-SMA表达情况,比较清除活化HSC前后HPC产生数量的变化。 2、在2-AAF/PH+Gliotoxin处理的基础上,于肝大部切除术后24小时腹腔注射不同活化状态的原代HSC培养上清4ml1次。48小时后处死大鼠,免疫荧光检测肝脏组织中PCK及α-SMA表达情况,明确活化HSC对HPC产生的影响。 三、明确活化HSC是否可促进大鼠肝细胞去分化为HPC 1、分离SD大鼠原代肝细胞和原代HSC,利用可使两种细胞不直接接触的双层细胞共培养体系,将肝细胞分别与不同活化状态HSC共培养,光镜下观察肝细胞的形态变化。在共培养的第0、3、5天,细胞免疫荧光检测肝细胞标志物HNF4α及HPC标志物PCK、Sox9表达变化情况。2、为进一步明确与活化HSC共培养的肝细胞中出现的PCK阳性细胞具有双向分化潜能,将其置于胆管上皮细胞分化诱导液(含丁酸钠)中培养,8天后细胞免疫荧光检测胆管上皮细胞标志物CK19表达情况;将其置于肝细胞分化诱导液(含HGF、胰岛素、转铁蛋白、地塞米松)中培养,11天后细胞免疫荧光检测肝细胞标志物白蛋白(Albumin, Alb)表达情况。 【实验结果】 一、活化HSC促进HPC产生 (一)HPC产生与HSC活化相关 1、免疫荧光检测人急性肝炎、肝纤维化、肝硬化组织中PCK及α-SMA的表达情况,结果显示仅在与α-SMA阳性细胞毗邻区域存在PCK阳性细胞。 2、在2-AAF/PH模型中,于肝大部切除术后0天、4天、6天、9天取肝脏组织,,免疫荧光结果显示第0天和第4天时PCK阳性细胞及α-SMA阳性细胞数量均较少,但第6天和第9天时PCK阳性细胞及α-SMA阳性细胞数量明显增加,且两者紧密相联,交织存在。 3、取APAP注射24小时后肝脏组织,免疫荧光结果显示PCK阳性细胞被大量α-SMA阳性细胞紧密围绕,提示HPC产生与HSC活化相关。 (二)活化HSC促进HPC产生 1、GdCl3可抑制Kuppfer细胞活性, Gliotoxin可清除活化HSC (1)CCl4造成急性肝损伤过程中,尾静脉注射GdCl3,取肝组织,免疫荧光结果显示与单纯CCl4急性肝损伤标本相比,CD68及α-SMA表达均明显减少。 (2)在CCl4造成急性肝损伤后,腹腔注射Gliotoxin,免疫荧光检测肝组织中α-SMA及CD68表达情况,结果发现与单纯CCl4处理组相比,α-SMA阳性细胞明显减少,而CD68阳性细胞却没有明显变化。 2、抑制HSC活化对HPC产生的影响 (1)在2-AAF/PH及APAP造模过程中,利用GdCl3抑制Kuppfer细胞活性及HSC活化,免疫荧光结果显示抑制HSC活化后,PCK阳性细胞及α-SMA阳性细胞数量均明显减少。 (2)抑制HSC活化后,再补充不同活化状态HSC培养上清,免疫荧光结果显示补充活化HSC培养上清后,PCK阳性细胞及α-SMA阳性细胞数量增加,且两者交织存在。而补充静息HSC培养上清后,肝组织PCK及α-SMA表达没有明显变化。 3、清除活化HSC对HPC产生的影响 (1)与单纯2-AAF/PH模型组织中存在大量PCK阳性细胞和α-SMA阳性细胞不同,腹腔注射Gliotoxin清除活化HSC后,免疫荧光结果显示肝组织中仅存在极少量PCK阳性细胞和α-SMA阳性细胞。 (2)清除活化HSC后,再补充不同活化状态HSC培养上清,结果显示补充活化HSC培养上清后,PCK阳性细胞数量增加。而补充静息HSC培养上清后,PCK阳性细胞数量却没有明显变化。 二、活化HSC促进大鼠肝细胞去分化为HPC 1、将肝细胞与不同活化状态HSC共培养,细胞免疫荧光结果显示共培养5天时,与活化HSC共培养的肝细胞中可出现PCK阳性细胞,而与静息HSC共培养或单独培养的肝细胞中并没有PCK阳性细胞的出现。在肝细胞与活化HSC共培养的第0、3、5天细胞免疫荧光检测Sox9及HNF4α的表达情况,结果显示第0天时Sox9表达极弱,而HNF4α大量表达,至第5天时,Sox9表达量明显增多,而HNF4α表达减弱。 2、将PCK阳性细胞置于胆管上皮细胞分化诱导液中培养8天后,细胞免疫荧光显示PCK阳性细胞分化为CK19阳性细胞。将PCK阳性细胞置于肝细胞分化诱导液中培养11天后,细胞免疫荧光结果显示PCK阳性细胞中出现Alb阳性细胞。 【结论】 一、肝前体细胞的产生伴随肝星状细胞的活化。 二、活化肝星状细胞促进肝前体细胞的产生。 三、活化肝星状细胞促进大鼠肝细胞去分化为肝前体细胞。 四、肝细胞来源的肝前体细胞可向肝细胞和胆管上皮细胞分化。
[Abstract]:Background and purpose of research
In chronic liver disease , HPC can be activated to participate in liver injury repair , and the number of HPC is associated with the severity of the disease and the risk index of liver cancer . HPC is not yet clear . Traditional views suggest that HPC comes from Hering tube , and it also shows that the liver cells , hepatic stellate cells ( HSC ) and bone marrow stem cells can be transformed into HPC in the environment of liver injury . Therefore , it is thought that HPC may be a heterogeneous population of different sources .
HSC is located in the Disse Gap and is in direct contact with liver cells and endothelial cells . In normal circumstances , HSC can be activated to produce extracellular matrix ( ECM ) and secrete a large amount of cytokines and growth factors . The activation of HSC is a central link in the development of liver fibrosis . In recent years , it has been shown that HSCs also have the role of promoting the regeneration of liver tissue . These studies have shown that HSCs play an important role in liver regeneration .
Based on the above background , the aim of this study was to clarify the effect of activated HSC on HPC in animal model of liver injury , and to use in vitro co - culture experiment to further clarify the cell source of HPC .
EXPERIMENTAL METHOD
I . To explore the relationship between HSC activation and HPC production
1 . Collect human acute hepatitis , liver fibrosis , liver cirrhosis tissue specimen , immunofluorescence assay HPC marker PCK and activated HSC marker 伪 - SMA expression .
2 - Acetamidofluorene ( 2 - AAF ) / partial hepatectomy ( PH ) was used to induce HPC activation . 2 - AAF was administered to Sprague - Dawley ( SD ) rats at a dose of 10 mg / kg for 5 days .
3 . The model of hepatic injury of acetaminophen ( N - acetyl - parainfluenza , APAP ) was established . APAP was injected intraperitoneally with a dose of 300 mg / kg body weight . The rats were sacrificed only once . After 24 hours of injection , the rats were sacrificed , fresh liver tissue and immunofluorescence were used to detect PCK and 伪 - SMA expression .
II . Identify the effects of activated HSC on HPC
( 1 ) To identify the effects of gadolinium chloride ( GdCl3 ) and Gliotoxin on kupffer cells and activated HSC
1 . The rats were injected intraperitoneally with 20 % carbon tetrachloride ( CCl _ 4 ) at a dose of 2 ml / kg body weight for 2 times . After the last injection for 48 hours , GdCl3 was injected intravenously once a dose of 10 mg / kg body weight . The rat liver tissues were taken after the injection of GdCl324 hours . The expression of CD68 and activated HSC marker 伪 - SMA was detected by immunofluorescence .
The rats were sacrificed at 3 mg / kg body weight at 3 mg / kg after injection of Gliotoxin for 24 hours . The expression of CD68 and 伪 - SMA was detected by immunofluorescence assay .
( 2 ) To observe the effect of inhibiting HSC activation on HPC production
1 . The primary HSC of SD rats was isolated and cultured in vitro in DMEM culture . The culture supernatant was cultured on days 3 ( resting ) and 12 days ( activated ) after in vitro culture .
2 . After 2 - AAF / PH model hepatectomy or APAP model APAP injection , GdCl3 was injected into the tail vein of model rats to inhibit the activity of kupffer cells and the activation of HSC . After 72 hours of liver resection or APAP injection , the rats were sacrificed , liver tissues were sacrificed , PCK and 伪 - SMA expression were detected by immunofluorescence , and the effects of HSC activation on HPC were observed .
3 . After injection of GdCl3 by the above model , HSC activation was inhibited after HSC activation . After 48 hours , the changes of the expression of PCK and 伪 - SMA were detected in rat liver tissues and immunofluorescence assay , and the effect of supernatant on HPC was observed .
( iii ) Observe the effect of removing activated HSC on HPC
1 . In the 2 - AAF / PH model , the rats were injected intraperitoneally with 20 % carbon tetrachloride at 2 ml / kg for 1 day at the same time with 2 ml / kg body weight to stimulate the activation of HSC , and the rats were injected intraperitoneally with Gliotoxin for 1 day before hepatectomy .
2 . On the basis of 2 - AAF / PH + Gliotoxin treatment , the expression of PCK and 伪 - SMA in liver tissues was detected after 4 ml of HSC culture at 24 hours after hepatectomy , and the effects of activated HSC on HPC were clearly defined .
III . It is clear whether activated HSC can promote rat liver cells to differentiate into HPC .
1 . The primary hepatocytes and the primary HSC were isolated from SD rats . The hepatocytes were co - cultured with HSC of different activation states , and the morphological changes of hepatocytes were observed under light microscope . The expression of the hepatocyte marker HNF4 伪 and HPC markers PCK and Sox9 were observed under light microscope .
It was cultured in hepatocyte differentiation inducing solution ( including HGF , insulin , transferrin , dexamethasone ) , and the expression of liver cell marker albumin ( Albumin , albumin ) was detected after 11 days .
Results of experiment
I . Activate HSC to promote HPC production
( i ) HPC production related to HSC activation
1 . The expression of PCK and 伪 - SMA in acute hepatitis , liver fibrosis and liver cirrhosis were detected by immunofluorescence , and the results showed that PCK - positive cells were only in the area adjacent to 伪 - SMA positive cells .
2 . In the 2 - AAF / PH model , the number of PCK - positive cells and 伪 - SMA - positive cells were significantly increased at 0 days , 4 days , 6 days and 9 days after hepatectomy , but the number of PCK - positive cells and 伪 - SMA - positive cells increased significantly on the 6th and 4th days , and the number of PCK - positive cells and 伪 - SMA - positive cells increased significantly at the 6th and 9th days , and both were closely related and interleaved .
3 . After 24 - hour injection of APAP , the results showed that PCK - positive cells were closely surrounded by a large number of 伪 - SMA positive cells , suggesting that HPC production was related to HSC activation .
( 2 ) Activated HSC promotes HPC production
1 . GdCl3 can inhibit the activity of kuppfer cells . Gliotoxin can remove activated HSC .
( 1 ) In the course of acute liver injury , the expression of CD68 and 伪 - SMA was significantly decreased compared with the acute liver injury .
( 2 ) The expression of 伪 - SMA and CD68 in liver tissues was detected by intraperitoneal injection of Gliotoxin after the acute liver injury .
2 . Inhibition of HSC Activation on HPC Production
( 1 ) In the process of 2 - AAF / PH and APAP modeling , the cell activity and HSC activation were inhibited by GdCl3 . The results showed that the number of PCK - positive cells and 伪 - SMA positive cells decreased significantly after HSC activation .
( 2 ) After inhibiting HSC activation , HSC culture supernatants were supplemented with different activation states , and the results showed that the number of PCK - positive cells and 伪 - SMA positive cells increased and the number of PCK - positive cells and 伪 - SMA positive cells increased , and the expression of PCK and 伪 - SMA in liver tissue was not significantly changed after the culture supernatant of HSC .
3 . Effect of Removal of Activated HSC on HPC
( 1 ) There was a large number of PCK positive cells and 伪 - SMA positive cells in the tissues of the pure 2 - AAF / PH model , but only a small amount of PCK positive cells and 伪 - SMA positive cells were found in the liver tissues after intraperitoneal injection of Gliotoxin .
( 2 ) After removing activated HSCs , HSC culture supernatants were supplemented with different activation states . The results showed that the number of PCK - positive cells increased after the culture supernatant was supplemented with activated HSC , while the number of PCK - positive cells did not change significantly after the culture supernatant was supplemented .
2 . Activation of HSC promotes rat hepatocytes to differentiate into HPC
The expression of Sox9 and HNF4 伪 in hepatocytes co - cultured with activated HSC showed that Sox9 expression was very weak at day 0 , while the expression of HNF4 伪 increased significantly , while the expression of HNF4 伪 decreased .
2 . The PCK - positive cells were cultured for 8 days in the differentiation - inducing solution of bile duct epithelial cells . The cells of PCK - positive cells were differentiated into CK19 - positive cells .
Conclusion
First , the production of hepatic progenitor cells is accompanied by activation of hepatic stellate cells .
secondly , activating the hepatic stellate cells to promote the generation of the liver precursor cells .
thirdly , activating hepatic stellate cells to promote the dedifferentiation of rat liver cells into liver precursor cells .
4 . The liver precursor cells derived from hepatocytes can differentiate into hepatocytes and bile duct epithelial cells .
【学位授予单位】:第二军医大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:R575
【共引文献】
相关期刊论文 前10条
1 胡敏;;肝脏干细胞与肝脏再生[J];传染病信息;2011年03期
2 刘浏;贾柳萍;杨冬华;;骨髓干细胞移植与肝硬化[J];中国肝脏病杂志(电子版);2010年03期
3 范公忍;李树玲;;骨髓干细胞移植治疗肝硬化的研究进展[J];国际消化病杂志;2013年04期
4 李荣富;王志红;;干细胞与消化系统疾病的治疗[J];国际消化病杂志;2013年04期
5 袁磊;罗贤武;王义;;肝内胆管细胞癌发病机制研究进展[J];肝胆外科杂志;2013年05期
6 王波;唐晓鹏;;脐血干细胞与骨髓干细胞联合移植治疗大鼠急性肝衰竭实验研究[J];实用肝脏病杂志;2014年01期
7 曾淑兰;安运锋;卢超;张立杰;张国海;;大鼠原代肝星形细胞的分离与鉴定[J];广西师范大学学报(自然科学版);2014年01期
8 吴志伟;段文彪;刘赞;宋才鑫;段建文;俞富祥;张启瑜;;肝星状细胞对大鼠肝部分切除术后肝再生修复的影响[J];肝胆胰外科杂志;2014年03期
9 张玉霞;崔淑芳;张友磊;;乙酰肝素酶siRNA对部分肝切除大鼠术后肝再生的抑制作用[J];肝胆外科杂志;2014年04期
10 刘硕;黄宇;黄迪;翁杰锋;张帅;古维立;;高龄供体肝移植安全性的探讨[J];广州医药;2014年06期
相关会议论文 前1条
1 杨志云;侯艺鑫;王宪波;;苦参碱对大鼠卵圆细胞介导的肝再生中RBP-J κ、HES1表达的影响[A];中华中医药学会第十五届内科肝胆病学术会议暨国家中医药管理局专科专病协作组(肝病组、传染病组)会议论文汇编[C];2012年
相关博士学位论文 前10条
1 韩玮;移植胰岛细胞和骨髓单个核细胞治疗糖尿病实验研究[D];新疆医科大学;2010年
2 狄军艳;肝干细胞在损伤后肝再生中的作用及其对肝癌细胞的作用研究[D];第二军医大学;2011年
3 范灵灵;Bmil在肝卵圆细胞扩增及肝癌发生中的作用[D];华中科技大学;2012年
4 孙玉岭;乙肝相关性肝病肝脏内干细胞样细胞的特性和定向分化[D];浙江大学;2008年
5 阎丽;外周血单核细胞移植治疗肝硬化的实验研究[D];第四军医大学;2008年
6 张伟;肝脏祖细胞/卵圆细胞在肝硬化及肝癌中的增殖、与肝脏微环境关系及部分生物学特性研究[D];华中科技大学;2007年
7 罗宏武;人羊膜上皮细胞横向分化为肝细胞样细胞及脾内移植的初步研究[D];中南大学;2008年
8 李岩;小鼠胚胎干细胞定向分化为肝细胞过程中转录组和蛋白质组的动态变化[D];复旦大学;2009年
9 李铸;受体来源转染pBLAST2-hHGF质粒肝卵圆细胞对大鼠移植肝的影响[D];昆明医学院;2010年
10 刘静;大鼠减体积肝移植术后肝脏再生差异蛋白及再生诱导免疫低反应性的实验研究[D];昆明医学院;2010年
相关硕士学位论文 前10条
1 杨玲玲;大鼠同种异体骨髓间充质干细胞移植治疗急性肝衰竭的实验研究[D];南昌大学;2011年
2 乔海;人胎儿胰岛样细胞团源胰腺干细胞分离和鉴定[D];西北农林科技大学;2007年
3 高强;人胎儿肝干细胞—聚酸酐复合载体体外共培养的实验研究[D];天津医科大学;2008年
4 于恒超;大鼠SHCs移植对急性肝损伤的影响[D];第四军医大学;2008年
5 刘卫辉;大鼠胎肝干/祖细胞的离心富集和绿色荧光蛋白转染[D];第四军医大学;2009年
6 双剑博;转染绿色荧光蛋白的大鼠胚胎肝干细胞的鉴定及治疗急性肝损伤的研究[D];第四军医大学;2009年
7 于兵;肝脏干细胞向胰腺β细胞分化的研究[D];第二军医大学;2009年
8 高亚丽;1. 重要细胞因子对肝前体细胞诱导分化实验 2. 丙型肝炎病毒F蛋白的原核表达与腺病毒构建[D];重庆医科大学;2009年
9 刘芳遐;人肝源性干细胞在Fah~(-/-)Rag2~(-/-)小鼠中生物学行为的研究[D];第二军医大学;2010年
10 秦苗;肝豆状核变性儿童服用大量硫酸锌后体内微量元素的变化[D];青岛大学;2010年
本文编号:1774769
本文链接:https://www.wllwen.com/yixuelunwen/xiaohjib/1774769.html