当前位置:主页 > 医学论文 > 特种医学论文 >

双源CT低剂量冠状动脉成像及心肌桥的影像学研究

发布时间:2018-08-14 10:32
【摘要】:目的:通过对比分析双源CT冠状动脉成像(CT coronary angiography,CTA)前瞻性心电门控扫描与回顾性心电门控扫描的图像质量和辐射剂量,为低剂量、个性化CT冠状动脉成像扫描方案的制定提供参考依据。 材料与方法:将90例行双源CT冠状动脉检查的患者依据扫描方式不同分为两组:前瞻扫描组40例,要求患者心率平稳且≤70bpm,图像采集时间窗为62-78%R-R间期,管电压120KV,应用自动管电流调制技术(automatic tube current modulation,ATCM),参考管电流为400mAs;回顾扫描组50例,采用ATCM技术、ECG管电流自动调制技术及螺距-心率自动匹配技术,管电压120KV,参考管电流为400mAs。由两位经验丰富的放射医生对所有冠脉节段(直径≥1mm)进行图像质量评分,意见不一致时协商确定。评分标准采用4分法(1分:优秀;2分:轻度伪影或/和错层;3分:中度伪影或/和错层;4分:严重伪影或/和错层),1-3分能用于图像诊断,4分不能用于诊断。对两组满足诊断要求(≤3分)的冠脉节段及评价为优(1分)的冠脉节段进行非参数秩和检验。计算所有患者CTA检查的辐射剂量,两组间比较采用配对t检验。 结果:(1)前瞻扫描组40例患者共评价冠脉554段,满足诊断(≤3分)及评价为优(1分)的冠脉节段比例分别为99.27%和96.93%。回顾扫描组50例患者共评价冠脉645段,满足诊断(≤3分)及评价为优(1分)的冠脉节段比例分别为98.76%和88.99%。对两组间满足诊断的冠脉节段比例进行比较,有统计学差异(P=0.024);评价为优的冠脉节段比例前瞻扫描组明显高于回顾扫描组,统计学差异明显(P<0.001)。(2)前瞻扫描组和回顾扫描组的有效辐射剂量分别为4.46mSv和6.61mSv,两组间比较差异具有统计学意义(P<0.001)。 结论:回顾性心电门控扫描应用各种降低辐射剂量的措施后,可明显降低辐射剂量;对于高心率及心律不齐患者有优势。前瞻性心电门控扫描是减少辐射剂量的有效方式,但较低且平稳的心率是其获得优质图像的保证。临床工作中应根据患者不同情况选择合适的扫描方式及参数,在保证图像质量的前提下,尽可能达到低剂量扫描。 第一节不完全心肌桥及完全性心肌桥的CT影像特征分析 目的:探讨心肌桥的分型及不同类型心肌桥-壁冠状动脉的CT影像特征。 材料和方法:收集50例行双源CT冠状动脉成像,诊断有心肌桥患者的影像学资料,所有患者采用回顾性心电门控扫描,重建显示冠脉的最佳收缩期及舒张期图像,重建层厚/层间距为0.75mm/0.5mm。根据冠状动脉被心肌包绕程度分为两组:不完全心肌桥组(冠状动脉被心肌部分包绕,至少在1/2以上)和完全性心肌桥组(冠状动脉完全被心肌包绕)。测量50例患者心肌桥的最佳舒张期及收缩期壁冠状动脉最窄处、桥前段及桥后段正常血管的管径,计算壁冠状动脉的狭窄率,其差异的比较采用两配对t检验。评价心肌桥患者桥前段冠脉伴发的粥样硬化改变,两组心肌桥间差异的比较采用卡方检验。 结果:50例患者中,冠脉CTA显示58处心肌桥,平均长度为2.02cm,其中不完全心肌桥23处,完全性心肌桥35处。58处心肌桥中前降支中段32处(60%),前降支远段17处(29.3%),前降支近段1处,第一对角支3处,第一钝缘支4处,右冠后降支1处。不完全心肌桥组舒张期及收缩期壁冠状动脉管径及狭窄率分别为1.93mm、1.71mm、4.7%和20.4%,完全性心肌桥组舒张期及收缩期壁冠状动脉管径及狭窄率分别为2.21mm、1.63mm、8.1%和33.7%。两组心肌桥舒张期及收缩期壁冠状动脉管径差值的差异具有统计学意义(P=0.008);两组心肌桥收缩期壁冠状动脉狭窄率的比较,差异具有统计学意义(P=0.014)。8处不完全心肌桥及15处完全性心肌桥的桥前段冠脉伴发粥样硬化病变,其差异无统计学意义(P=0.339)。 结论:完全性心肌桥对壁冠状动脉的压迫程度较不完全心肌桥严重,且持续时间更长。冠脉CTA成像能够无创地显示心肌桥的长度和厚度,评价壁冠状动脉舒张期和收缩期的形态学变化及伴发的粥样硬化改变,为临床治疗计划提供客观的依据。 第二节CT冠状动脉成像诊断心肌桥的价值,与CAG对照 目的:对比分析冠脉CTA和CAG检查患者的影像学资料,探讨冠脉CTA对心肌桥诊断的临床应用价值。 材料和方法:收集83例同时行双源CT冠状动脉成像(冠脉CTA)及CAG检查患者的影像学资料。图像分析采用双盲法,即由两位放射科诊断医生及两位介入科医生分别在不知道冠脉CTA及CAG诊断结果的前提下进行,两种检查手段对心肌桥的诊断分别由两组医生协商做出,计算CTA及CAG对心肌桥的检出率并采用卡方检验进行比较。 结果:(1)83例患者中冠脉CTA显示41例共48处心肌桥,检出率为49.4%(41/83),28处为完全心肌桥,20处为不完全心肌桥。48处心肌桥中29处位于前降支中段,11处位于前降支远段,2处位于右冠后降支,1处位于第一锐缘支,3处位于第一钝缘支,1处位于中间支,1处位于第一对角支。41例患者中7例为2处心肌桥。(2)CAG显示19例共19处冠脉“挤牛奶”效应,即19例(19处)心肌桥,检出率为22.9%(19/83)。19处心肌桥中16处位于前降支中段,,2处位于前降支远段,1处位于右冠后降支。与CTA对照,CAG显示的19处心肌桥与其位置一致,其中15处为完全性心肌桥,4处为不完全心肌。冠脉CTA对心肌桥的检出率高于CAG,差异具有统计学意义(P<0.001)。 结论:双源CT冠状动脉成像能多方位、直观显示冠状动脉与心肌的解剖关系,对心肌桥的显示优于CAG,且具有无创性检查的优点;但CAG在显示壁冠状动脉血流动力学方面优于CTA。 第三节单纯性心肌桥患者心肌首过灌注成像的初步研究 目的以正常心肌首过灌注为对照,初步评估单纯性前降支心肌桥患者相应供血区的冠脉CTA心肌首过灌注情况,为临床综合评价心肌桥及临床诊治策略的制定提供参考依据。 材料和方法收集42例以胸痛就诊、冠脉CTA诊断为单纯前降支心肌桥的患者资料;病例组内根据心肌桥类型分为完全性心肌桥组及不完全心肌桥组;根据收缩期壁冠状动脉受压程度分为收缩期狭窄≥50%组及收缩期狭窄<50%组。20例冠脉CTA显示冠脉无异常的体检者作为正常对照组。所有患者均采用回顾性扫描,全剂量曝光时间窗30-75%R-R间期,重建最佳舒张期(65%-75%RR)及收缩期(30%-40%RR)图像,重建层厚/间距为0.75mm/0.5mm。采用美国泰瑞工作站的心功能分析软件获得舒张期及收缩期时左室心肌17节段平均CT值。计算前降支供血区(1、2、7、8、13、14及17段)的平均CT值作为首过心肌灌注值。测量主动脉CT值,计算心肌平均CT值与主动脉平均CT值的比值为心肌首过灌注校正值(corrected MP, c-MP)。将主动脉平均CT值与心肌平均CT值进行相关性分析。心肌桥组和正常组的心肌平均CT值及c-MP行两独立样本t检验。完全性心肌桥组及不完全心肌桥组、狭窄≥50%组及狭窄<50%组和正常组间的心肌平均CT值及c-MP采用多组间比较。 结果(1)正常组主动脉平均CT值为367.1HU,心肌桥组主动脉平均CT值为398HU,均与心肌平均CT值呈明显正相关(r=0.768-0.854,P<0.001)。 (2)舒张期心肌桥组和正常组前降支供血区的平均CT值为94.0HU及96.0HU(P=0.216)、舒张期心肌桥组和正常组前降支供血区的c-MP为0.236及0.263(P<0.001);收缩期心肌桥组和正常组的前降支供血区平均CT值为89.3HU及94.6HU(P<0.001)、收缩期心肌桥组和正常组的前降支供血区c-MP为0.225及0.259(P<0.001)。 (3)完全性心肌桥组舒张期及收缩期的前降支供血区平均CT值为90.9HU及86.5HU,低于不完全心肌桥组(100.8HU及95.7HU),差异均有统计学意义(P<0.05)。完全性心肌桥组的舒张期及收缩期c-MP为0.235及0.224,不完全心肌桥组为0.240及0.228,均明显低于正常组,差异均具有统计学意义(P<0.05)。 (4)狭窄≥50%组舒张期及收缩期的前降支供血区平均CT值为91.7HU及87.2HU,低于狭窄<50%组(96.9HU及92.1HU),差异均有统计学意义(P<0.05)。狭窄≥50%组的舒张期及收缩期c-MP为0.234及0.223,狭窄<50%组为0.239及0.227,均明显低于正常组,差异均具有统计学意义(P<0.05)。 结论测量心肌桥患者冠脉CTA检查时舒张期及收缩期首过灌注心肌CT值,能一定程度反应相应冠脉供血区的心肌血流灌注情况。以胸痛就诊单纯前降支心肌桥患者前降支供血区心肌平均CT值低于正常组,以收缩期更明显,特别是完全性心肌桥并收缩期狭窄≥50%的患者,应引起临床关注。
[Abstract]:Objective: To compare the image quality and radiation dose of prospective ECG-gated and retrospective ECG-gated dual-source CT coronary angiography (CTA) in order to provide a reference for the development of low-dose, personalized CT coronary angiography scanning scheme.
Materials and Methods: 90 patients underwent dual-source CT coronary artery examination were divided into two groups according to different scanning methods: prospective scanning group (40 cases), patients with stable heart rate and < 70 bpm, image acquisition window for 62-78% R-R interval, tube voltage 120 KV, automatic tube current modulation (ATCM), reference tube. The current was 400 mAs. In the retrospective scan group, 50 patients were assessed by ATCM, ECG tube current automatic modulation and pitch-heart rate automatic matching. The tube voltage was 120 KV, and the reference tube current was 400 mAs. Quasi-four-point method (1:excellent; 2:mild artifacts or/and staggered layers; 3:moderate artifacts or/and staggered layers; 4:severe artifacts or/and staggered layers), 1-3 points can be used for image diagnosis, 4 points can not be used for diagnosis. Non-parametric rank sum test was performed on two groups of coronary artery segments that meet the diagnostic requirements (<3 points) and those that were evaluated as excellent (1 point). The radiation dose of all CTA patients was calculated. Paired t test was used in comparison between the two groups.
Results: (1) Forty patients in prospective scan group evaluated 554 segments of coronary artery, 99.27% satisfied the diagnosis (< 3 points) and 96.93% excellent (1 points). In retrospective scan group, 50 patients evaluated 645 segments of coronary artery, 98.76% satisfied the diagnosis (< 3 points) and 88.99% excellent (1 points), respectively. The proportion of coronary segments in the prospective scan group was significantly higher than that in the retrospective scan group (P < 0.001). (2) The effective radiation dose of the prospective scan group and the retrospective scan group were 4.46 mSv and 6.61 mSv, respectively. Academic meaning (P < 0.001).
Conclusion: Retrospective ECG-gated scan can significantly reduce radiation dose after various measures to reduce radiation dose, and has advantages for patients with high heart rate and arrhythmia.Prospective ECG-gated scan is an effective way to reduce radiation dose, but low and stable heart rate is the guarantee of obtaining high-quality images. Choose the appropriate scanning mode and parameters according to the different conditions of patients, and achieve low-dose scanning as far as possible on the premise of ensuring image quality.
Analysis of CT features of incomplete myocardial bridge and complete myocardial bridge in section I
Objective: To investigate the classification of myocardial bridge and CT imaging features of different types of myocardial bridge mural coronary artery.
Materials and Methods: The imaging data of 50 patients with myocardial bridge diagnosed by dual-source CT coronary angiography were collected. All patients underwent retrospective ECG-gated scanning to reconstruct the best systolic and diastolic images of the coronary artery. The reconstructed slice thickness/slice spacing was 0.75mm/0.5mm. The optimal diastolic and systolic diastolic diastolic diastolic diastolic diastolic diastolic and systolic wall diastolic diastolic diastolic diastolic diastolic diastolic diastolic diastolic diastolic diastolic diastolic diastolic diastolic diastolic diastolic diastolic diastolic diastolic diastolic diastolic diastolic dia Two paired t-test was used to evaluate the changes of atherosclerosis associated with anterior bridge coronary artery in patients with myocardial bridge.
Results: Coronary CTA showed 58 myocardial bridges with an average length of 2.02 cm, including 23 incomplete myocardial bridges, 35 complete myocardial bridges, 32 (60%) middle anterior descending branches, 17 (29.3%) distal anterior descending branches, 1 proximal descending branch, 3 first diagonal branches, 4 first obtuse marginal branches and 1 posterior descending branch of right coronary artery. The diastolic and systolic wall coronary artery diameter and stenosis rates were 1.93 mm, 1.71 mm, 4.7% and 20.4% respectively in the two groups. The diastolic and systolic wall coronary artery diameter and stenosis rates in the complete myocardial bridge group were 2.21 mm, 1.63 mm, 8.1% and 33.7% respectively. There was significant difference in the incidence of coronary artery stenosis between the two groups (P = 0.014). There was no significant difference in the incidence of atherosclerosis between the anterior segment of coronary artery with incomplete myocardial bridge at 8 sites and with complete myocardial bridge at 15 sites (P = 0.339).
Conclusion: Complete myocardial bridges have more severe compression and longer duration than incomplete myocardial bridges. Coronary CT angiography can noninvasively display the length and thickness of myocardial bridges, evaluate the morphological changes of diastolic and systolic coronary arteries, and provide objective information for clinical treatment planning. The basis for it.
The value of second slice CT coronary angiography in diagnosing myocardial bridge, compared with CAG.
Objective: To compare and analyze the imaging data of coronary CTA and CAG in order to explore the clinical value of coronary CTA in the diagnosis of myocardial bridge.
Materials and Methods: The imaging data of 83 patients who underwent dual-source CT coronary angiography (CTA) and coronary angiography (CAG) at the same time were collected. The detection rate of myocardial bridge by CTA and CAG was calculated and compared by chi-square test.
Results: (1) Coronary CTA showed 48 myocardial bridges in 41 patients (49.4% (41/83), 28 complete myocardial bridges and 20 incomplete myocardial bridges. 29 of the 48 myocardial bridges were located in the middle of the anterior descending branch, 11 in the distal part of the anterior descending branch, 2 in the posterior descending branch of the right coronary artery, 1 in the first acute branch, 3 in the first obtuse branch, and 1 in the distal part of the anterior descending branch. (2) CAG showed 19 coronary "milking" effects in 19 cases (19 myocardial bridges). The detection rate was 22.9% (19/83). 16 of 19 myocardial bridges were located in the middle of the anterior descending branch, 2 in the distal part of the anterior descending branch and 1 in the posterior descending branch of the right coronary artery. The detection rate of myocardial bridge by coronary CTA was higher than that by CAG (P < 0.001).
Conclusion: Dual-source CT coronary angiography can visualize the anatomical relationship between coronary artery and myocardium in many directions, and is superior to CAG in displaying myocardial bridge, and has the advantage of non-invasive examination, but CAG is superior to CTA in displaying hemodynamics of mural coronary artery.
Preliminary study of myocardial first pass perfusion imaging in third patients with simple myocardial bridging
Objective To evaluate the first-pass perfusion of coronary CTA in patients with simple anterior descending branch myocardial bridge by comparing with normal myocardial first-pass perfusion.
Materials and Methods 42 patients with chest pain diagnosed by coronary CTA as simple anterior descending myocardial bridge were divided into complete myocardial bridge group and incomplete myocardial bridge group according to the type of myocardial bridge. All patients underwent retrospective scanning with a full-dose exposure window of 30-75% R-R interval, reconstruction of the best diastolic (65% -75% RR) and systolic (30% -40% RR) images, reconstruction of slice thickness/interval of 0.75 mm/0.5 mm. Average CT values of 17 segments of left ventricular myocardium during systolic and systolic periods were calculated. Average CT values of the anterior descending artery (1,2,7,8,13,14 and 17 segments) were calculated as the first pass myocardial perfusion values. Mean CT values were correlated. The mean CT values and c-MP values of the myocardium in the myocardial bridge group and the normal group were examined by two independent samples t test.
Results (1) The average CT value of aorta in normal group was 367.1 HU, and that of aorta in myocardial bridge group was 398 HU, which was positively correlated with the mean CT value of myocardium (r = 0.768-0.854, P < 0.001).
(2) The mean CT values of the anterior descending artery (ADB) in the diastolic myocardial bridge group and the normal group were 94.0HU and 96.0HU (P = 0.216), the c-MP values of the ADB in the diastolic myocardial bridge group and the normal group were 0.236 and 0.263 (P < 0.001), and the mean CT values of the ADB in the systolic myocardial bridge group and the normal group were 89.3HU and 94.6HU (P < 0.001), respectively. The c-MP of the anterior descending branch blood supply group and the normal group were 0.225 and 0.259 (P < 0.001).
(3) The mean CT values of the diastolic and systolic anterior descending artery were 90.9HU and 86.5HU in the complete myocardial bridge group, which were significantly lower than those in the incomplete myocardial bridge group (100.8HU and 95.7HU), respectively (P < 0.05). The diastolic and systolic c-MP values of the complete myocardial bridge group were 0.235 and 0.224, and those of the incomplete myocardial bridge group were 0.240 and 0.228, which were significantly lower than those of the incomplete myocardi The difference between the normal group and the control group was statistically significant (P < 0.05).
(4) The mean CT values of the diastolic and systolic blood supply areas of the anterior descending artery in the stenosis (>50%) group were 91.7 HU and 87.2 HU, lower than those in the stenosis (< 50%) group (96.9 HU and 92.1 HU), and the difference was statistically significant (P < 0.05). The diastolic and systolic c-MP values of the stenosis (>50%) group were 0.234 and 0.223, and that of the stenosis < 50% group was 0.239 and 0.227, which were significantly lower than those in the normal group Statistical significance (P < 0.05).
Conclusion Measuring the CT value of the first-pass perfusion myocardium in the diastolic and systolic phases of the patients with myocardial bridge can reflect the myocardial perfusion in the corresponding coronary artery supply area to a certain extent. Patients with muscular bridging and systolic stenosis of more than 50% should be clinically concerned.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2012
【分类号】:R814.42

【参考文献】

相关期刊论文 前10条

1 张雪梅;王健;黎川;李丹;;心肌桥的双源CT诊断及临床意义[J];第三军医大学学报;2008年20期

2 张龙江;卢光明;;冠状动脉先天性异常的多层螺旋CT血管成像[J];放射学实践;2008年08期

3 蒲晓群;心肌桥导致缺血性心脏病二例[J];湖南医科大学学报;1998年04期

4 龙丹;钱晓明;刘瑜;孙志远;;双源CT诊断心肌桥及心肌桥相关冠状动脉病变的临床分析[J];医学研究生学报;2008年04期

5 郑玲;张龙江;黄伟;蔡军;卢光明;;双源CT心肌桥的检出率及其价值[J];临床放射学杂志;2008年02期

6 刘巧玲;李永东;葛智平;代松魁;陈晓春;;心肌桥所致急性心肌梗死4例报告[J];临床心血管病杂志;2010年09期

7 张文胜;内皮细胞应力反应元件的研究进展[J];生物医学工程学杂志;2001年03期

8 韩艳丽;王营;姜红菊;左岩霞;朱靖;王健;刘芳;李继福;陈玉国;;心肌桥与冠状动脉粥样硬化关系的探讨[J];中国心血管病研究杂志;2006年03期

9 陈尔齐,杨亚安,邢卫星;对壁冠状动脉血流与形态关系的观察分析[J];中国血液流变学杂志;2001年03期

10 王升平;肖湘生;刘士远;;心肌桥及其影像学评价[J];医学影像学杂志;2008年04期



本文编号:2182579

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/yundongyixue/2182579.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3f83b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com