基于锥形束CT的牙齿髓腔分割算法研究
[Abstract]:The latest medical research has found that dental pulp deposition can be used to calculate the age of human body in forensic science, based on the popular oral CBCT (Cone Beam CT, conical beam CT imaging technology. How to accurately realize the three-dimensional tomographic image segmentation of pulp cavity is the premise of application. Due to the influence of noise interference, blurred tooth boundary and similar bone gray value between teeth and alveolar bone, there are many difficulties in the accurate segmentation of pulp cavity. PCNN (Pulse Coupled Neural Network, Pulse coupled neural network (PNN) has biological background, can extract effective information from complex background, has the characteristics of synchronous pulse release and global coupling, and its signal form and processing mechanism are more in line with the physiological basis of human visual nervous system. In this paper, based on the in-depth study of PCNN theory and application, an improved PCNN model is proposed to realize the accurate segmentation of three-dimensional tomographic sequence images of CBCT pulp cavity. The main work and innovations of this paper are as follows: (1) aiming at the complicated structure of the traditional PCNN model, a large number of manual setting parameters, unstable threshold attenuation and so on, this paper accepts some network structures by adjusting the PCNN. On the premise of ensuring its biological characteristics, an improved PCNN model is proposed, which optimizes the external input of neurons, the weight of connection input L and the attenuation mode of threshold. The experimental results show that the model effectively reduces the complexity of the algorithm. The description ability of pixel spatial information is improved. (2) aiming at the fuzziness of tooth image, the number of iterations of PCNN model is difficult to determine and needs to be set manually. In this paper, based on the spatial information of image pixels, the influence of iteration times on PCNN model segmentation algorithm is analyzed, and a criterion for determining the optimal number of iterations based on minimum cross entropy is given by using the information entropy optimization criterion. The improved PCNN model segmentation algorithm is realized to segment the pulp cavity image of CBCT teeth accurately.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:D919;TP391.41
【参考文献】
相关期刊论文 前10条
1 陈剑波;;香港高校学生事务管理的模式与特点[J];浙江理工大学学报;2016年06期
2 王鑫东;王博;;一种基于脉冲耦合神经网络计算的SAR图像噪声抑制方法[J];黑龙江科技信息;2016年08期
3 黄敏;罗万波;李兴华;万幸;;医学图像分割技术[J];信息通信;2015年07期
4 邓翔宇;马义德;;基于PCNN的自动图像分割[J];兰州工业学院学报;2014年03期
5 吕红力;;基于多阈值算法融合的图像分割[J];郑州轻工业学院学报(自然科学版);2014年02期
6 肖体乔;谢红兰;邓彪;杜国浩;陈荣昌;;上海光源X射线成像及其应用研究进展[J];光学学报;2014年01期
7 张翡;范虹;;基于模糊C均值聚类的医学图像分割研究[J];计算机工程与应用;2014年04期
8 胡阳明;周大可;鹿乐;杨欣;;基于形变模型的三维人脸快速重建改进算法[J];吉林大学学报(信息科学版);2012年06期
9 张石;董建威;佘黎煌;;医学图像分割算法的评价方法[J];中国图象图形学报;2009年09期
10 唐英干;邸秋艳;赵立兴;关新平;刘福才;;基于二维最小Tsallis交叉熵的图像阈值分割方法[J];物理学报;2009年01期
相关博士学位论文 前1条
1 李积英;融合量子衍生及DNA计算速率的智能算法在图像分割中的研究[D];兰州交通大学;2014年
相关硕士学位论文 前5条
1 赵晗;脉冲耦合神经网络用于图像分割若干问题研究[D];中国矿业大学;2015年
2 张旦;基于自适应PCNN模型的图像处理[D];山东大学;2015年
3 陈世洋;PCNN模型改进及参数调整研究[D];河北工业大学;2015年
4 李惠;基于分割和轮廓特征的医学牙齿图像处理算法研究[D];山东大学;2014年
5 房华;脉冲耦合神经网络在图像处理中的应用研究[D];西安石油大学;2010年
,本文编号:2486403
本文链接:https://www.wllwen.com/yixuelunwen/yundongyixue/2486403.html